谁来解释下双生子问题在广义里火箭上的比 地球上的年轻吗?详细解释下,谢谢(复制粘贴的最好不要)能不能用简单易懂的道理解释下啊。。。3楼说的 好像是如果火箭一直飞就是年轻,还

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 10:05:25
谁来解释下双生子问题在广义里火箭上的比 地球上的年轻吗?详细解释下,谢谢(复制粘贴的最好不要)能不能用简单易懂的道理解释下啊。。。3楼说的 好像是如果火箭一直飞就是年轻,还
x\Io#Iv+uwu{(u/؀}L"qQZ(DRKI\Gt32 "$˽L0["X_~۰gܨjkA\[Mg8d`2h\ڹ`,?1VPZֿM.Lii[qcgL-o2vxwG UϜ F|x (׃g+?#K҄}=ן_'IrO@,9}W#fr7~oZ|%\믅/ϟe/%!bP~,d/!>C #ojv|=vw/?_?Ѡ'Vn*/?oZRs~$T;KcooSTLпbAz7`cS:%ɚ2"iy"^0,zq9ѓYõ99~֖odLlsa3 zo-%hJ a>ܨ{+焹`&*U"(1)qL<$$ LvpO)kTIt`'I>۹'M1DZ [ ,чcG<T}\7} /߇oBjءE+{iϤi2JlIG(_eZ) OOפ/s9-X;3k @*^@} Ed5>MTȨW@5]oC27I|_όXouEBRgM&uKrZ"Id' _~4!{ 4Rޒ&>$9_? q5-rԽj=}"yT&{Gfl:Km!<߶P EH!%; L;@mW'~O:D?f:TA3| 3 x^{6[7Gf)τi섙hME|3l(F3dKzV*1w1ǀW^ӹA~V+TSZg&9oL [Agϩ,>PY X>+%S%oW F,o\TFJ'*QB yl2/W~U9y,Cu tHX&Wl>c-fʮ&sq5&l-ArmKwփb]6HkĄ=`UFdF WJ&*>}5crXWkR:1{?FC#%f襂n5Qdg9w. 9EbմY}.ޔ Gd=e+=-;0|KxB։w&*-p09 W2+~ImX sKkjj A ba%c׾k` G/@2ˆnKD_e3yD$.|\K䪮IQ0EM !oƄ.9?jގu=6! 1Fů>N~|0^NCY{qnL.Nfҟ%㹊:\yz3-/k0jڛ Qk!vA1vh* Tl9[1n#_|%`m/)^0\-jfִoR/L:77U\fxu nW6aa}˔WDńe{'t>U*fspV؋ i4yaI<hgj ,\e5zpz`} ǧ 7~@=t ׈7j;%ZY"<M{p YشۈP), #uMښ9l!X7/sꦻ1"PҁlV7 Gv:Q{׬oܨշl-f;n1Άr=LPE:AAS:-N:zȮ&Kh .٨r3Da^ r9)0M *MGsZ^F]dE]*ES =ЇN4#[S\ŰŁglB^ zi$ţ;D˱o˽1;d_2,ǎ\hş#RzYd[Q#bvk~؋S/z kVnӰBjbKW%ϡc*IŽ3a#U(MZٺ5řSWp:Z/8]uxF xVWAc+(3!`zX&É)MywV"GV_T̬I.캚UIc}Rujy# (`l_Tkfs+y9!RЇ¤pao@@σjk#m拜yFPK![!5:%SG1UpN,cLtE֘Ht~3hSMU zX ),r0[:n3HN:QY2asO f\6˖#~Ad|iGm@IQ,{`R86LqdU܁1TJS6L $!RǶ)fRx؞KZ֖܅l rKjk\\"*vtj`mLZK&TĬ( ieOoxy$AפWXk"ej6t[w䭮RYtg@CVkrZNt+48,4"@#>˸ hsvfZ]$@TQS C6Cb$@|ZWu >%~j{h[[ Ȩi bX2+o͎/ RjMVG{2Xb:+iq0]EuEeCwjIJ5a̞ꀄE )R)ۥ7 .ײԒ?eƽ&նuRS.}W z{Qq)rd嚿bEؽH]V"RGIŲ6kjv0{kEG* ͒/F2q|ŋs$tKL!Mg_%V@7#J+cd.H)i^JeǘRf~VJ^%e'i`7yD S&.k iq PWm,ٰh@~;!~]zID]PMoRHEmӲܵqgv*TD#"?4b鶠K%)=aF"/蕘ſAa|q)ݩR"]J:Lݠh$bB\.$viH'W(Nc!n QH4?%xk [<&mL'uu옓A9uV9փ E}_~/2g2[)͛a{#"]}aַmiY(}CNXޅmF DpK۞Eۗ`:QR"DQA=q~|};w-;>@-- X`w#)0%r*pM\ĕ_Pl}i!xQEk"֮q[DQcKګu‘5:fDv`g˃n5ѹMk3!/J0r-kBafV,e1T 7pYWD;7:eT⍆ܬ)aKhFy83Vm +GdxdbN&kBl< XLP0<԰머`1Y MRK.4šl%\Eo|kRn9o?åxDxj2‰MK6փXokqHqUSq,9@l-PDncPh^0=g3|=ީM,\6 \rWɽ)|_ݓwB􅠯/[|ɧFOSGר$ݴqǺx׮UZ .IkGINڞn,9ߩW*XLZ.Qس^>˞,!x ,{xf$ DEeN^.Le)+^ž@"aE^8+WC3CJ]?b1l>m'l,3p7DAdŸr/o&_C~g <{68 $ \q7nekIwE"Ϣ}gjiwV>A1/X34v׿:vOlMt_ň)Ob/,RM% xאvƤVM=ѕĄD&,tOH]0E2Kuy΄?k;(vT-DR!N?2mCpQJtVmZdkuݎ 8=HIjycQN1 gJC%d^Ѱ>u B-W~LkjF\vj9uChH.vhsv4jm>zZPmZqM'=꛰{iPӾ?νE/$z"҂6);%SKuS\f?{Wn$&]NrC +-@['k]-AO %-9E%7PޛVs_?J*톭L DGC2~v 2e-gG*M؁3/=C"Mi+3h8f8/QMkYґ%{i[ދ']J3, u9P;05=B&{ة=x {/+W&̾GkA_=nYۜRqUsq56\'.2;DU˨W.Ie%9uJ@0F!OӱnwjEt"WϠE#Cjk> yA?-=W b~

谁来解释下双生子问题在广义里火箭上的比 地球上的年轻吗?详细解释下,谢谢(复制粘贴的最好不要)能不能用简单易懂的道理解释下啊。。。3楼说的 好像是如果火箭一直飞就是年轻,还
谁来解释下双生子问题
在广义里火箭上的比 地球上的年轻吗?详细解释下,谢谢
(复制粘贴的最好不要)
能不能用简单易懂的道理解释下啊
。。。3楼说的 好像是如果火箭一直飞就是年轻,还飞回来就是一样。没有高人吗?

谁来解释下双生子问题在广义里火箭上的比 地球上的年轻吗?详细解释下,谢谢(复制粘贴的最好不要)能不能用简单易懂的道理解释下啊。。。3楼说的 好像是如果火箭一直飞就是年轻,还
双生子佯谬,就是说地球上的人看到飞船很快的飞,觉得他的速度快,时间膨胀,所以认为他年轻
而飞船上的人以他为参考系,觉得地球上的人时间膨胀,所以认为地球上的人年轻,这个问题在狭义相对论的范围之内是无法解释的,所以称为双生子佯谬.
正是这个东西,是广义相对论出现了,广义相对论中指出飞船的加速,转向,再加速回来的过程中有引力场的存在,所以他更年轻
以上只是个人理解
你有什么不清楚的可以发我消息,我尽能力帮你解释

越接近光速,时间流逝越慢
因此接近光速的火箭上的双子会年轻
留在地球上的,因为时间过的相对来说更快,因此会比较老

- -好深奥

狭义相对论的时间膨胀效应告诉我们时间在运动的物体上变慢了,产生了双生子佯谬,但是我们需要在同一时间同一地点比较双生子谁更年轻,这是做不到的,我们说的双生子佯谬是相对论理论产生的一个事实,并不存在逻辑问题,应该说是双生子现象...

全部展开

狭义相对论的时间膨胀效应告诉我们时间在运动的物体上变慢了,产生了双生子佯谬,但是我们需要在同一时间同一地点比较双生子谁更年轻,这是做不到的,我们说的双生子佯谬是相对论理论产生的一个事实,并不存在逻辑问题,应该说是双生子现象

收起

打个比喻说,从距离几万光年的星球发出一道光到地球,到达地球时,在那个星球上相当于几万年前。所以说只要超越光速,就能回到过去,但是你改变不了历史,改变不了过去

转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向...

全部展开

转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向转向
注意,转向时狭义先对论就不能自恰了

收起

双生子佯谬
开放分类: 物理、理论
双生子佯谬 twin paradox
狭义相对论中关于时间延缓的一个似是而非的疑难。按照狭义相对论,运动的时钟走得较慢是时间的性质,一切与时间有关的过程都因运动而变慢,变慢的效应是相对的。于是有人设想一次假想的宇宙航行,双生子甲乘高速飞船到远方宇宙空间去旅行,双生子乙则留在地球上,经过若干年飞船返回地球。按地球上的乙看来,甲处于运动之...

全部展开

双生子佯谬
开放分类: 物理、理论
双生子佯谬 twin paradox
狭义相对论中关于时间延缓的一个似是而非的疑难。按照狭义相对论,运动的时钟走得较慢是时间的性质,一切与时间有关的过程都因运动而变慢,变慢的效应是相对的。于是有人设想一次假想的宇宙航行,双生子甲乘高速飞船到远方宇宙空间去旅行,双生子乙则留在地球上,经过若干年飞船返回地球。按地球上的乙看来,甲处于运动之中,甲的生命过程进行得缓慢,则甲比乙年轻;而按飞船上的甲看来,乙是运动的,则乙比较年轻。重返相遇的比较,结果应该是唯一的,似乎狭义相对论遇到无法克服的难题。
事实上双生子佯谬并不存在。狭义相对论是关于惯性系之间的时空理论。甲和乙所处的参考系并不都是惯性系,乙是近似的惯性系,乙推论甲比较年轻是正确的;而甲是非惯性系,狭义相对论不适用,甲不能推论乙比较年轻。其实根据广义相对论,或者甚至勿须用广义相对论,设想一个甲相对乙作变速运动的特殊过程:很快加速-匀速-很快减速然后反向很快加速-匀速-很快减速,按照狭义相对论,仔细考虑其中的时间延缓和同时性的相对性,可以得出无论从甲或乙分析,结论是相同的,都是飞船上的甲要比乙更年轻。1966年用μ子作了一个类似于双生子旅游的实验,让μ子沿一直径为14米的圆环运动再回到出发点,实验结果表明运动的μ子的确比静止的μ子寿命更长。
1905年9月,德国《物理年鉴》杂志刊登了一篇《关于运动物体的电动力学》的论文,它宣告了狭义相对论假说的问世。正是这篇看似很普通的论文,建立了全新的时空观念,并向明显简单的同时性观念提出了挑战。我们知道由爱因斯坦狭义相对论可以得出运动的物体存在时间膨胀效应。在1911年4月波隆哲学大会上,法国物理学家P.朗之万用双生子实验对狭义相对论的时间膨胀效应提出了质疑,设想的实验是这样的:一对双胞胎,一个留在地球上,另一个乘坐火箭到太空旅行。飞行速度接近光速,在太空旅行的双胞胎回到地球时只不过两岁,而他的兄弟早已死去了,因为地球上已经过了200年了。这就是著名的双生子详谬。双生子佯谬说明狭义相对论在逻辑自恰性上还存在不完善的地方。本文正是以时间膨胀效应为线索对狭义相对论做进一步的探讨,分析双生子佯谬产生的原因。
首先让我们来看一个例子。假设我们一家来到了美国科学家伽莫夫笔下汤普金斯先生曾经梦游过的城市,在这座城市里由于速度极限(光速)很低,所以相对论效应非常显著。来到这座城市后,我们进了一家瑞士钟表店,每人选了自己喜欢的一块表并要求营业员把三块表的时间调成一致。随后,我们来到了一家游乐园,其中一个游乐项目是乘坐光速飞车,其实飞车的速度并没有达到光速。我站在起点A处,帮儿子把安全带系牢,儿子高兴地坐在A点的光速飞车里。我妻子站在终点B处,A与B之间的距离为L。车马上要出发了,我下意识地对了一下自己和儿子的表,时间一分一秒都不差。抬头再看终点处妻子的表,我发现妻子的表比我的表慢了一些。来不及多想车已经象离弦的箭一样冲了出去。我突然发现儿子的表越走越慢,当然是相对我的表而言,最后到达终点时与我妻子的表一致了。看来瑞士表的质量也不怎么样,我打算玩完回去后把表给退了。在回来的路上我看了一眼妻子和儿子的表,奇怪!怎么我们的表显示的时间分秒不差,我明明看见他们俩的表比我的慢了呀!我把我的发现告诉了我的妻子,她说她也觉得挺奇怪的,但是与我所说的现象稍有些不同。在终点处,她发现我和儿子的手表都比她的表慢了,但当儿子乘坐飞车向她驶来时,儿子的表却变得越来越快,最后到达终点时竟与她的表一致了。这时候儿子也加入了我们的谈话,他告诉了我他的发现,他是这样描述的,在起点处他发现爸爸的表跟他的表时间是一致的,妈妈的表走得比他的慢,当车运动起来后,爸爸的表变慢了而妈妈的表比原来快了,最后当他到达终点时妈妈的表与他的表又一致了。
从上面这个例子中,我们看到由于三个人所处的状态不同,得出的结论也大相径庭。但都有一个共同的特点,就是每个人都是以他本人的时间为基准作出判断的。我们知道光速是有限的,光在空间运行是需要时间的。当所研究的对象涉及到空间大尺度范围或当物体运动的速度大到可以与光速相提并论时,光通过空间两点所需的时间就不能不考虑进来,这样通常在小尺度低速度情况下被认为是同时发生的两个事件就不能再认为是同时的了。爱因斯坦也正是从时间的同时性入手,提出了狭义相对论。在我们生活的宇宙中,时间是非物质的量,它是为了描述物体运动而人为引进的一个物理概念。经典物理对时间是这样定义的“绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而在均匀地,与任何其他外界事物无关地流逝着”。这一定义在研究空间小尺度范围或低速运动的物体时,无疑是正确的,因为它暗含这样一个概念即时间的同时性是绝对。但在研究空间大尺度范围或高速运动的物体时,这一定义是否仍然有效,取决于对时间的同时性是如何定义的,同时还要看空间两点两个事件发生的时间是如何记录的。
假设有两个完全一样的钟被放置在AB两地。我们可采用中点对钟法将两地的钟校准。我们说发生在AB两地的两个事件是同时的,如果AB两地的钟所指示的时间是一样的话。这个结论暗含有这样一个条件即在AB两地分别有两个观察者记录本地事件发生的时间,然后再将两个时间进行对比,判断这两个事件是否是同时发生的,判断的结果与AB两地的位置无关。从这个意义上说时间的同时性是绝对的。我们再看另一种情况,我们仍采用同样的方法将AB两地的钟校准。从A点观察AB两地同时发生的两个事件,得到的结论是A地的事件先于B地的事件,相差的时间与两地之间的距离有关。同理,从B点观察AB两地同时发生的两个事件,得到的结论则是B地的事件先于A地的事件。按照这个结论,时间的同时性又是相对的。所以说时间的同时性是相对的还是绝对的完全取决于时间是如何测量的。狭义相对论所涉及的是后一种情况。
运动物体的情况又如何呢?假设有一枚火箭从A点运动到B点。火箭上装有校对好的时钟。我们仍采用中点对钟法在AB两点之间A1、A2、A3...放置一系列校对好的时钟,并在A1、A2、A3...的每一个位置上都设有一个观察员记录火箭经过的时间。一切就绪火箭出发了。在A点的观察员立刻发现火箭上的钟变得越来越慢了,时间变慢的速度与火箭的速度有关。而据A1、A2、A3...的观察员报告,火箭在通过他们所在的位置时,火箭上钟的指示与本地钟的指示是一样的。而在B点观察员则发现,在火箭未出发前,火箭上钟的指示已经比B点的时间慢了一些,但随着火箭逐渐接近,火箭上的时钟却变得越来越快,当到达B点时竟然与B点的时钟是一样的。如果在火箭里也有一个观察员,他会得到这样的结论即当火箭运动起来后,A点的钟变慢了,B点的钟变快了而沿途所经过的钟所指示的时间与火箭上的时间是一致的。在上面的例子中,火箭相对于A和B的运动方向是不同的,所以从A点和B点观察的结果也应是不同的,相对于A点时间是变慢了,相对于B点时间是变快了。时间是变快了还是变慢了取决于观察者与被观察的物体之间的距离是增加还是减少了,变快变慢的速度与两个物体之间的相对运动速度有关。下面我们将定量的分析上面的例子。
我们仍用上面所举火箭的例子,将两个校准好的时钟分别放置在AB两地。火箭以速度V从A点向B点运动。AB两点之间的距离为S。令ΔT1为火箭经过AB两点时,在AB两点的观察员所记录的时间之差。令ΔT2为在A点的观察员记录火箭经过AB两点的时间差。当物体达到B点时,光返回A点所需的时间为AB之间的距离S除以光速C。根据以上条件,我们可以得到:
ΔT2-ΔT1= S/C (1)
S=V×ΔT1 (2)
将(2)式代入(1)经过整理后得到;
ΔT1=ΔT2÷(1+V/C) (3)
分析(3)式我们可以看出,当火箭运动的速度V=C时,ΔT2=2×ΔT1;当火箭运动的速度V<<C时,ΔT1≈ΔT2,由于1+V/C≥1,所以ΔT2≥ΔT1。我们得到一个结论,火箭上的时间变慢了即时间膨胀,当然这是从A点观察所得到的结论。如果从B点观察,结论又是怎样呢?我们仍然令ΔT1为火箭经过AB两点时,在AB两点的观察员所记录的时间之差,ΔT2为在B点的观察员记录的火箭从A点到B点的时间差,光从A点到B点所需的时间为S/C。与上面类似我们可以得到:
ΔT1-ΔT2= S/C (4)
S=V×ΔT1 (5)
将(5)式代入(4)经过整理得到:
ΔT1=ΔT2÷(1-V/C) (6)
从(6)式我们可以看出,当火箭运动的速度V=C时,ΔT2为零,也就是说当你看到火箭出发时,火箭已经到了你跟前了;当火箭运动的速度V<<C时,ΔT1≈ΔT2,由于等式1-V/C≤1,所以ΔT2≤ΔT1。所以我们又得出一个相反的结论,火箭的时间变快了即时间收缩了。
到目前为止,我们都是在基于光速不变这样一个前提下讨论问题的。光速不变假设是爱因斯坦从迈克尔逊-莫雷为证明以太存在所做的干涉实验的否定结果中得出的推论。在上面的讨论中,运动物体的速度V是这样得到的,在AB两地分别放置两个校准好的时钟,AB两地之间的距离为L。在A点记录物体出发的时刻,在B点记录物体到达的时刻,用两地之间的距离L除以两地所记录的时间差,就得到了运动物体的速度,这样计算的结果与两地之间的距离无关。当然还可以用另一种方法,在A点记录物体发出的时刻,在物体经过B点返回到A点时,记录物体到达的时刻,用两倍的距离L除以在A点记录的时间差,就得到运动物体的速度。这两种算法的结果是一样的。如果从A点来观察运动的物体在一去一回时速度是否是一样呢?用我们上面所得到的时间膨胀和时间收缩效应的结论,我们可以得出,物体在离开A点后,速度是变慢的,而当物体从B点返回时,速度又是变快的,当然这是从A点观察所得到的结果。
狭义相对论还存在另外一种效应即尺缩效应。可以采用同样的方法,证明运动物体的长度随观察者与运动物体之间的距离的减少,还存在长度伸长的效应。通过以上讨论,我们清楚了,同时性是相对的还是绝对的取决于观察时间的方法,离开这一点强调同时性是相对的还是绝对的是没有意义的。即使按照同时性是相对的观点,时间除了膨胀效应外,还应有收缩的效应,所以说双生子佯谬本身是不存在的。

收起

ee

当你在光速运动时,根据相对论质量变得无限大,周围的时空被扭曲,时间膨胀,变慢,在加上去回地球的加减速产生的加速度的引力场效应,时间就变慢了!
所以在火箭的就年轻了,有事实证明的了。

理论的就不多谈了。
通俗的理论就是天上一天,地上一年。高速运动的坐标系中,时间会变慢。但是对于两个坐标系里面的人,是感觉不到自己所在的坐标系的不同。每个人享受的时间是相同的。假如双生子中一个坐在一个围绕地球近光速运行的飞行器里(当然这是不可能的,因为离心力),他和他的孪生子在三维空间坐标距离周期性变化。但是四维空间中,平行时间轴方向越来越远。虽然在三维坐标系中他们完全可以再次相遇。但是已经...

全部展开

理论的就不多谈了。
通俗的理论就是天上一天,地上一年。高速运动的坐标系中,时间会变慢。但是对于两个坐标系里面的人,是感觉不到自己所在的坐标系的不同。每个人享受的时间是相同的。假如双生子中一个坐在一个围绕地球近光速运行的飞行器里(当然这是不可能的,因为离心力),他和他的孪生子在三维空间坐标距离周期性变化。但是四维空间中,平行时间轴方向越来越远。虽然在三维坐标系中他们完全可以再次相遇。但是已经物是人非。
双生子问题中回来的是年轻的。
这个在回收卫星上面的生物样本里可以发现这个效应。

收起

谁来解释下双生子问题在广义里火箭上的比 地球上的年轻吗?详细解释下,谢谢(复制粘贴的最好不要)能不能用简单易懂的道理解释下啊。。。3楼说的 好像是如果火箭一直飞就是年轻,还 双生子佯谬怎么解释?这是相对论的问题! 关于 时钟双生子佯谬百科中说“相对论”有这样一段:“·时钟双生子佯谬相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬.一对双生子A和B,A在地球上,B乘火箭去做星际旅行, 为什么狭义相对论只在惯性参照系里有效? 双生子佯谬的解释为什么说是:加速度造成了时间的变化? 别用语文里的词法来解释,我要的是广义 关于狭义相对论的双生子佯谬的解释有一个火箭瞬间掉头的解释中,为什么火箭掉头时地球的时间进度会变快?火箭掉头的过程中地球超光速划过半个圆,应该是地球上的时间变慢了啊. 时钟双生子佯谬,刚接触相对论,请把我当白痴细说在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程.在掉头过程中,地球由火箭后方很远的地方 相对论相关 圆周率问题和双生子佯谬第一个问题,在飞速旋转的圆盘上测试圆周率大于3.14,不明白.一般的解释为,在高速旋转的盘子上测周长时,尺子变短,所以测出的值大拉了,而直径不变.我的 模型火箭燃料的问题我以前买过一个火箭模型.往火箭里装白色粉末再加水然后插在底座上就可以飞了,那个白色的粉末是什么东西? 相对论中双生子问题:宇宙飞船相对地球接近光速飞行,经历一段时间返回,相对地球上的兄弟来看,飞船里的双胞胎兄弟比自己更年轻,而同样的结论,相对飞船里的双胞胎兄弟来看,则地球上双胞 谁帮忙通俗的解释下广义货币和狭义货币.M1,M2又是什么? 谁来解释下这句话-0-我实在是想不通...如果你在时速接近光速的飞船里航行,你的生命会比在地球上的人要长很多.时间不是都在同时的走吗?我还听过一句话.说如果你在时速接近光速的飞船里 问个关于相对论中双生子的问题!根据相对论高速运动的物体上时间走得比地球慢,假设有对双胞胎,如果其中一人A在一个相对于地球高速运动的星球上,那么根据相对论,A应该比在地球上的B老 谁能解释下相对论?包括广义和狭义 广义积分的问题. 广义积分的问题. 关于草船借箭的问题谁能解释下 为何曹操射的不是火箭呢? 船都是木头做的 一点就着啊.就算在河里也来不及扑救吧.就想以前火烧战船一样 烧诸葛亮的船不好么. 谁来解释一下双生子佯谬的说法和原因,并分析