求证:tan(x+y)+tan(x-y)=sin2x/cosx*cosx-siny*siny

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 09:09:05
求证:tan(x+y)+tan(x-y)=sin2x/cosx*cosx-siny*siny
x){{f$iThWjjřyFZ Bȯ6IEi/N `Q&0HD, + kt4GÄ`jb]rWVr&\H.EfҺ 8#B uabP6H-p}Ztt`l$فb

求证:tan(x+y)+tan(x-y)=sin2x/cosx*cosx-siny*siny
求证:tan(x+y)+tan(x-y)=sin2x/cosx*cosx-siny*siny

求证:tan(x+y)+tan(x-y)=sin2x/cosx*cosx-siny*siny
tan(x+y)+tan(x-y)
=sin(x+y)/cos(x+y)+sin(x-y)/cos(x-y)
=[sin(x+y)cos(x-y)+cos(x+y)sin(x-y)]/[cos(x+y)cos(x-y)]
=sin2x/[(cosxcosy-sinxsiny)(cosxcosy+sinxsiny)]
=sin2x/[(cosx)^2(cosy)^2-(sinx)^2(siny)^2]
=sin2x/[(cosx)^2(cosy)^2-(1-(cosx)^2)(1-(cosy)^2)]
=sin2x/[(cosx)^2+(cosy)^2-1]
=sin2x/[(cosx)^2-(siny)^2]
得证