如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点. (1)求证:BE∥平面PDF; (2)求证:平面PDF⊥平面PAB; (3)求二面角P-BC-A的大小.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 09:49:15
如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点. (1)求证:BE∥平面PDF; (2)求证:平面PDF⊥平面PAB; (3)求二面角P-BC-A的大小.
xV]oV+Q`"8 Y'¶&0Ma5+h˗ ,,"KP.$Sǐ+B_P27n>~?X~Q+ͦ{f%-p>ݺ<'z_3 qǡx'qj3K ?l|a gq67qbtʣq}! 4A/u$@U0~AB|xO0<>nrCn,\KPJ sG|XLQi6Ϯ ~EΩ_ko9U^cMS܃xf԰0E!dA%L)hL@VS5YVEM*ICP&()\_ƏV\2gqfǗ)UQ iгU˫˶0'-%ձԸW%)ɳ/R}&kֽu9!a{0z^u 2(qHa

如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点. (1)求证:BE∥平面PDF; (2)求证:平面PDF⊥平面PAB; (3)求二面角P-BC-A的大小.
如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点. (1)求证:BE∥平面PDF; (2)求证:平面PDF⊥平面PAB; (3)求二面角P-BC-A的大小.

如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点. (1)求证:BE∥平面PDF; (2)求证:平面PDF⊥平面PAB; (3)求二面角P-BC-A的大小.

 
(1)取CD中点G,连接BG、EG
用中位线性质证明EG//PD
用全等证明BG//DF
于是平面PDF//平面BGE
最后得到BE//平面PDF
 
(2)连接BD,易知三角形ABD为等边三角形
由三线合一得到DF⊥AB
而由PA⊥平面ABCD知PA⊥DF,即DF⊥PA
由此可知DF⊥平面PAB
又DF属于平面PDF
所以平面PDF⊥平面PAB
 
(3)过A作BC延长线的垂线交于H,连接PH
因PA⊥平面ABCD,易知PA⊥BC
于是BC⊥平面PAH,进而知PH⊥BC
所以∠PHA即为二面角P-BC-A的平面角
 
在RT三角形PAH中
由全等或勾股定理易知AH=√3
由三角函数定义知tan∠PHA=PA/AH=√3/3
即∠PHA=30°

证明:(1)取PD的中点M,
∵E是PC的中点
∴ME是△PCD的中位线
∴ME∥FB
∴四边形MEBF是平行四边形∴BE∥MF
∵BE⊄平面PDF,MF⊂平面PDF
∴BE∥平面PDF.
(2)连接BD,易得△ABD为等边三角形
又由F为AB的中点
∴DF⊥AB
又∵PA⊥平面ABCD,

全部展开

证明:(1)取PD的中点M,
∵E是PC的中点
∴ME是△PCD的中位线
∴ME∥FB
∴四边形MEBF是平行四边形∴BE∥MF
∵BE⊄平面PDF,MF⊂平面PDF
∴BE∥平面PDF.
(2)连接BD,易得△ABD为等边三角形
又由F为AB的中点
∴DF⊥AB
又∵PA⊥平面ABCD,
∴PA⊥DF
又由PA∩AB=A
∴DF⊥平面PAB
又∵DF⊂平面PDF
∴平面PDF⊥平面PAB.
(3)过点A做AH⊥CB延长线于H,因为PA⊥面ABCD,所以PH⊥BC,既∠PHA为二面角P-BC-A的平面角,
在Rt△ABC中PA=1,AH=
3,所以∠PHA=30°
既二面角P-BC-A的大小为30°.

收起

如图在四棱锥P—ABCD中,底面ABCD是菱形, 如图,在四棱锥P-ABCD中,底面ABCD是平行四边形… 如图在底面为平行四边形的四棱锥P-ABCD中 求解如何求体积 如图,在四棱锥P-ABCD中,底面ABCD是矩形,四条侧棱长都相等求证:平面PAC垂直平面PBCD 如图,在四棱锥p-ABCD,PD⊥底面ABCD,AD⊥AB 如下图,在四棱锥P-ABCD中,底面为正方 形,PC与底面ABCD垂直(图1) 该四棱锥的主视图如下图,在四棱锥P-ABCD中,底面为正方 形,PC与底面ABCD垂直(图1) 该四棱锥的主视图和侧视图,它们是腰长 为6c 如图,在四棱锥P一ABCD中,底面ABCD是菱形,PA垂直ABcD,M为PD的中点1求证PB 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,指出图中有哪些是直角三角形 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点, 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2,建立空间直角坐标系如何求E点的坐标, 如图,在四棱锥p -ABCD中底面 ABCD是正方形,侧面PAD 是正三角形,平面PAD垂直底面ABCD,求平面PAB垂直...如图,在四棱锥p -ABCD中底面 ABCD是正方形,侧面PAD 是正三角形,平面PAD垂直底面ABCD,求平面PAB垂直 如图,在四棱锥p -ABCD中底面 ABCD是正方形,侧面PAD 是正三角形,平面PAD垂直底面ABCD,求直线PC与平面ABC求直线PC与底面ABCD所成角的正切值 如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD,E,F分别为PD,AB的中点,且PA=AB=1,BC=2.求四棱锥E-ABCD的体积 如图,在四棱锥s—abc中,底面abcd是矩形,sa垂直于底面abcd 如图在四棱锥P—ABCD中已知侧面PAD为等腰直角三角形底面ABCD为直角梯形AB...如图在四棱锥P—ABCD中已知侧面PAD为等腰直角三角形底面ABCD为直角梯形AB‖CD∠ABC=∠APD=90°.侧面PAD⊥底面ABCD.且AB=4.AP 如图,在四棱锥P-ABCD中,底面ABCD为正方形,E为PC中点,证明:PA‖平面EDB 如图,在四棱锥P-ABCD中,底面ABCD是正方形,E是PC的中点,证明:PA//平面EDB 如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形, 如图,在四棱锥P-ABCD中,底面ABCD是正方形,E是PC的中点,证明:PA//平面EDB