已知,如图,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,使AD=AB,连接DC.求证;DC⊥BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 06:44:44
已知,如图,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,使AD=AB,连接DC.求证;DC⊥BC
xRMo0+Uשc5{9v"$nBPN qA@%~Jt唿@t"9Vyc٧WS-{3h''eiitgpZ@_'/;ZKO36W[^.&Sh^roU,]?mɛ"Ivtwۭ@:p8(A{"Ru93Ner -F;XY cd"g^%¶!"G +VWYTv0 [QPź wX$!X@_Y2>Cٺ8vraG㲢SnqPPVaW`SKyPK{xӾUS8&8A"vy`]I,W?`

已知,如图,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,使AD=AB,连接DC.求证;DC⊥BC
已知,如图,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,
在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,使AD=AB,连接DC.求证;DC⊥BC

已知,如图,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,在△ABC中,AB=AC,AE⊥BC于点E,延长BA至D,使AD=AB,连接DC.求证;DC⊥BC
证明:
∵AB=AC
∴∠B=∠BCA
又∠BAC+∠B+∠BCA=180°
∴∠BAC=180°-2∠BCA
又AD=AC=AB
∴∠D=∠ACD
又∠BAC =∠D+∠ACD
∴∠BAC=2∠ACD
∴180°-2∠BCA=2∠ACD
180°=2(∠BCA+∠ACD)
∠BCA+∠ACD=90°
∴DC⊥BC