函数y=sinx/[sinx+2sin(x/2)]的最小正周期是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 15:13:04
函数y=sinx/[sinx+2sin(x/2)]的最小正周期是多少?
x){ھ řy RHjTi>lN .~:qų9Xtɬ&$S[ΆR۟O٘Q ѭ ҬĴ_ f<7̰TEm0 hCԳΆ'*hmS X]C[t  $0@ 59ߠb6Pl lgS[͇n~qAb42l80,

函数y=sinx/[sinx+2sin(x/2)]的最小正周期是多少?
函数y=sinx/[sinx+2sin(x/2)]的最小正周期是多少?

函数y=sinx/[sinx+2sin(x/2)]的最小正周期是多少?
由f(x)=sinx/(sinx+2sinx/2),又sinx=2sin(x/2)*cos(x/2)得
f(x)
=[2sin(x/2)*cos(x/2)]/[2sin(x/2)*cos(x/2)+2sin(x/2)]
=cos(x/2)/[cos(x/2)+1]
所以 1/f(x)=1+1/cos(x/2)
即 [1/f(x)]-1=1/cos(x/2)
因为函数y=1/cos(x/2)的周期为4π.所以
[1/f(x+4π)]-1=[1/f(x)]-1 故原函数的周期为4π.