已知n阶矩阵AA=第一行 1 2 3.n第二行0 1 000...0第三行 00100.0.第n行:0000.01则r(A方-A)是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:33:20
xQJ@~=6I6Чyp "` 5 U
-)٬=ݍZlx7ͮ呷tyH qxOY*Y clP0 eb;+dE2d}\_es[֑vvH
MEƛc01hL
|v
9KG=|=6IB,]xEMrD_Uu鈢y\DnF9wgŹy
d 2MF12H +CZNȠZOʀ*6= R
已知n阶矩阵AA=第一行 1 2 3.n第二行0 1 000...0第三行 00100.0.第n行:0000.01则r(A方-A)是多少
已知n阶矩阵A
A=第一行 1 2 3.n第二行0 1 000...0第三行 00100.0
.第n行:0000.01
则r(A方-A)是多少
已知n阶矩阵AA=第一行 1 2 3.n第二行0 1 000...0第三行 00100.0.第n行:0000.01则r(A方-A)是多少
A^2 -A
=A(A-E)
显然
A-E=
0 2 3…n
0 0 0…0
……
0 0 0…0
于是r(A)=n,r(A-E)=1
由秩的不等式可以知道,
r(A)+r(A-E)- n ≤r(A方-A)≤min[r(A),r(A-E)]
显然r(A)和r(A-E)中的最小值是r(A-E)=1
所以
n+1 -n≤r(A方-A)≤ 1
即1≤r(A方-A)≤ 1
所以
r(A方-A)=1