(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2. 求证:△ABC是等腰三角形.考点:等腰三角形的判(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2.证明:作OE⊥AB于E,OF⊥AC于F,∵∠3=∠4,
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 09:42:42
xTmOP+Fav$m&MfmW6lOc
td5MAI66vh_{}9sν'kM$+B4BSoX^@Z>>_Pu
(H~Q<|vwͭQ6^ dBsl۪_ 5sO|0g\s@. j/( ZG_Z@3Ga~.Z4}%+2ufRFD1<wfv@UYU{ ʔ=tV,JcB[JԼ}v
vнݧhjL >$Ky;O:B" =ջ`2#ߓf7 B$Spv8P)Q@$$Sz|xD9LK!$2!etG.*`x0Z4FKhp&
8`4PIua2RuVe( pXS
NpʆHEAbJ9:*Vf?*9BjIZN
(ixZk]Zsf[2T<A|c{esNv!H|O>W\٘^BV:f!2P2dniok.:jv((nW'I%g/.#s:*lϹrѹF xSYlU6(OG^ZBu3Av{+Fy!zc4)-w[32&mTqA[xE]
(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2. 求证:△ABC是等腰三角形.考点:等腰三角形的判(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2.证明:作OE⊥AB于E,OF⊥AC于F,∵∠3=∠4,
(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2. 求证:△ABC是等腰三角形.考点:等腰三角形的判
(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2.
证明:作OE⊥AB于E,OF⊥AC于F,
∵∠3=∠4,
∴OE=OF. (问题在这里.理由是什么啊.我有点不懂)
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形.
(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2. 求证:△ABC是等腰三角形.考点:等腰三角形的判(2006•南充)已知:如图,OA平分∠BAC,∠1=∠2.证明:作OE⊥AB于E,OF⊥AC于F,∵∠3=∠4,
从角平分线上任意一点作两边的垂线,垂线长相等,可以直接用,不说理由
也可以证明:∠AEO=∠AFO=90 ∠3=∠4,所以∠AOE=∠AOF 可证△AEO和△AFO全等,
所以OE=OF
角平分线上的点到线段两边的距离相等,AO是角平分线,这是一条初二的定理。
做三角形ABC的高AF,Rt三角形ADF中AD=2DF,所以AD=BC+2BD,又三角形BDE是正三角形BC+BD=AD-BD=AE
原题没错阿,改了就不对了