在△ABC中,∠A=90°,AB=AC,BD是∠ABC的角平分线,请你说明AB+AD=BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:33:42
在△ABC中,∠A=90°,AB=AC,BD是∠ABC的角平分线,请你说明AB+AD=BC
xV[OG+)ۻ{yC>FQnpc>$6*(&`PUZƀ'B̮ vEbso3wW[?ddűwz&-3r:e[FYW~tn8Gz{-/dጚzBGWz}5ƃ'Fzplr2!EeGrɉ(s7c껱OPߎMcBx5XΔd"BfR`Pќ M!a$ ]%a.1,'%MSgx^/@ź^\m.#Kgd,#!eX:+ޑ E:vlœ0Yrܥ cDiKoz}8-{`oڱ;⾜%s9YU5_= nuݱ \J9ބemZ5D"cs f4/k- fM '3jd Q2Ex@)2UTT)H^8EsilXj05U 7$m 0ŷ;xzvЬI!kj;ZSB$9Ve¯&ٶ}7ndUή퍡\ {@}ݟ0V J9r#}@|ـ;y]G:#x{ jL^-ZjpZv(Z|QX%S<#&yo qo ƌ4_U Erbmc$#-ib穑~bNBz ;?7\$y86];582x9@ػ}PwDw7IoRYہn}xe3xelVЅ#-S+r#N 6kf X^0h!$&M29Iʕ͒8rQFHGLEuG.ѕ~0]

在△ABC中,∠A=90°,AB=AC,BD是∠ABC的角平分线,请你说明AB+AD=BC
在△ABC中,∠A=90°,AB=AC,BD是∠ABC的角平分线,请你说明AB+AD=BC

在△ABC中,∠A=90°,AB=AC,BD是∠ABC的角平分线,请你说明AB+AD=BC
一楼你睡糊涂了吧,BD是角分线,要是你想的那么出题还有谁不会做啊
过D作DE垂直BC
因为BD为∠ABC的角平分线
所以AB=BE AD=DE

因为AB=AC且∠A=90°
所以∠C=45°
则∠EDC=45°,EC=DE=AD

BC=BE+EC=AB+AD

以D点做BC的垂线,交点为E,那么角DEC为90度,角C为45度,三角形DEC就是一个等腰三角形,DE=EC
根据角平分线上的点到角两边的距离相等,AD=DE
所以AD=EC
而AB=BE(三角形ABD全等于三角形BDE)
BE+EC等于BC
所以AD+AB=BC

因为A为直角,AB=AC所以为等边直角三角形,又因为,AD为角分线,据三线合一,可知ADB也为等边直角三角形且D为中点,所以,CB=AD+BD。

解法1:

   如图,过D作DE⊥BC交于E ,

∵ BD是∠ABC的角平分线,∠A=90°,

∴ AD=ED,

又∵ ∠A=∠BED=90°,BD=BD,

∴ Rt△ABD≌Rt△≌EBD ,

∴ AB=BE ,

∵ ∠A=90°,AB=AC ,

∴ ∠C=45°,

∵ ∠CED=90°,

∴ ∠CDE=∠C=45°,ED=EC ,

∴ AD=ED=EC ,

∴ AB+AD=BE+EC=BC 。

[PS:此法与3L雷同。]

解法2:

   设AB=x ,

∵ ∠A=90°,AB=AC, BD是∠ABC的角平分线,

∴ BC=(√2)x ,∠ABD=45°/2 ,

∴ AD=AB(tan∠ABD)

     =x(tan45°/2)

     =x[(1-cos45°)/sin45°]

     =x[(1-1/√2)/(1/√2)]

     =x(√2-1)

     =√2x-x ,

∴ AB+AD=x+√2x-x=√2x=BC 。

[PS:此法用到半角公式,不知您是否学过,仅供参考,  tan(α/2)=(1-cosα)/sinα]

    祝您进步!