设e1,e2,…,en是R^n的标准正交基,若(a1,a2,…,an)=(e1,e2,…,en)P,证明:a1,a2,…,an是R^n的标准正交基的充分必要条件是P为正交矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 04:58:05
x){n_NΣe:yf{>قm.~kt^t/H4I(LӴ@֧b}}BV<֧mOXl'<ٱ/glI*n/"!^T|g}K~s }/.d炗fX):hh}ttwa m@~ CH
设e1,e2,…,en是R^n的标准正交基,若(a1,a2,…,an)=(e1,e2,…,en)P,证明:a1,a2,…,an是R^n的标准正交基的充分必要条件是P为正交矩阵
设e1,e2,…,en是R^n的标准正交基,若(a1,a2,…,an)=(e1,e2,…,en)P,证明:a1,a2,…,an是R^n的标准正交基的充分必要条件是P为正交矩阵
设e1,e2,…,en是R^n的标准正交基,若(a1,a2,…,an)=(e1,e2,…,en)P,证明:a1,a2,…,an是R^n的标准正交基的充分必要条件是P为正交矩阵
这个还是直接看书后面的习题解答或者配套答案吧
设e1,e2,…,en是R^n的标准正交基,若(a1,a2,…,an)=(e1,e2,…,en)P,证明:a1,a2,…,an是R^n的标准正交基的充分必要条件是P为正交矩阵
e1 e2 e3是三维空间的标准正交基,证明:
设e1,e2是正交单位向量,如果向量OA=2e1+me2,向量OB=ne1-e2,向量OC=5e1-e2,若A、B、C三点在一直线上……且m=2n,求m,n的值.
设e1,e2,是两个垂直的单位向量,则(e1+e2)(3e1—2e2)=
设e1和e2是相互垂直的单位向量,a=3e1+2e2,b=-3e1+4e2,则a*b等于向量a*向量b=(3e1+2e2)*(-3e1+4e2)=-9e1*e1+6e1*e2+8e2*e2=-9+8=-1为什么-9e1*e1+8e2*e2=-9+8?
设单位向量e1和e2满足:e1与e1+e2的夹角是60° 则e2与e1-e2的夹角为
设e1,e2是平面的一组基底,且a=e1+2e2,b=-e1+e2.则e1+e2=
请问一道考研数学线性方程组的题:证明任意b,AX=B总有解的充要条件是|A|不等于零充分性我会证,必要性的证明时解析书上说r(a1,a2,…,an)>=r(e1,e2,…,en)=n.所以r(A)=n所以|A|不等于零.可是我有个疑
[线代]线性相关n维单位向量组构成矩阵E E=(e1,e2...en)由I E I=1知R(E)=n 这是为什么?e1=e2=...en 都是单位矩阵,他们组成的矩阵是3 X 3n阶矩阵,秩应该是等于3才对啊?A=(a1.am)B=(a1.am,am+1)有R(B
设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ).A.e1+e2和e1-e2 B.3e1-2e2和4e2-6e1 C.e1+2e2和e2+2e1 D.e2和e1+e2
一道线代题,题目不是重点,重点是用什么定理好?设n维基本向量组{ e1,e2,...,en}可由向量组{α1,α2,...,αn}线性表示.证明:α1,α2,...,αn 线性无关.思路1:∵{α1,α2,...,αn}也由基本向量组{ e1,e2,...,en}
设e1、e2是同一平面内的两个向量,则有( )A、e1、e2一定平行B、e1、e2的模相等C、对一平面内的任一向量a,都有a=γe1+μe2(γ、μ属于R)D、若e1、e2不共线,则对同一平面内a,都有a=γe1+μe2(γ、μ
如图所示,下列三图中的多边形均为正多边形,M、N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图中的双曲线的离心率分别为e1,e2,e3,则()A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2
如图所示,下列三图中的多边形均为正多边形,M、N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图中的双曲线的离心率分别为e1,e2,e3,则()A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2可讲下原
急如图所示,下列三图中的多边形均为正多边形,M、N是所在边的中点,双曲线均以图中的F1,F2为F2为焦点设图中的双曲线的离心率分别为e1,e2,e3,则()A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2
设e1,e2是两个不共线的向量,则向量a=3e1-2e2与向量b=e1+朗母搭e2共线的充要条件是?
设e1,e2是两个单位向量,他们的夹角是60°则(2e1-e2)(-3e1+2e2)=
设向量e1,e2为不共线的向量,则2向量e1-向量e2与P向量e1+q向量e2共线的充要条件是?