f(n)=1/2+1/3+1/4 ...+1/(2^n-1) ,则f(k+1)-f(k)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:28:05
f(n)=1/2+1/3+1/4 ...+1/(2^n-1) ,则f(k+1)-f(k)=
x)KӴ5767b=== akcfF.ҴI*'Y~ 64H\S$*^l$ bucmȈ,t[\6E AmFh" 5m ~s^bY Ovv|Eө]tg맀zd֓]mOv4ttklaHٌ/C'7:b=Hgk

f(n)=1/2+1/3+1/4 ...+1/(2^n-1) ,则f(k+1)-f(k)=
f(n)=1/2+1/3+1/4 ...+1/(2^n-1) ,则f(k+1)-f(k)=

f(n)=1/2+1/3+1/4 ...+1/(2^n-1) ,则f(k+1)-f(k)=
f(k+1)有2^(k+1)-2项,f(k)有2^k-2项
因此f(k+1)-f(k)有[2^(k+1)-2]-[2^k-2]=2^k项,即
f(k+1)-f(k)=1/2^k+1/(2^k+1)+.+1/(2^(k+1)-2)+1/(2^(k+1)-1)

还要什么过程啊,f(k+1)就比f(k)多了一项吗,
答案就是那一项咯1/[2^(k+1)-1]