定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间 零到正无穷 左闭右开 上的图像 与 f(x)的图像重合,设a>b>0,四个不等式:f(b)-f(-a)>g(a)-g(-b)f(b)-f(-a)g(b)-g(-a)f(a)-f(-b)g(b)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 12:49:25
定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间 零到正无穷 左闭右开 上的图像 与 f(x)的图像重合,设a>b>0,四个不等式:f(b)-f(-a)>g(a)-g(-b)f(b)-f(-a)g(b)-g(-a)f(a)-f(-b)g(b)
xSKR@  ;+ Pj*,T~ A\B'r3{A.*Щg+ۋ;2|՞>q`ӓ.\MDLBA(IKz}EkݐMRke܍<pSmbVĸ,hxmC:pDbbxU =5dm-ܧr{3aP ;.2)4*%q~>3/S)PRw1\> P`E< lej5z}k`ߘQh+ ވx!g`TH5q:!ډ_-Th#$|e,7z_>TKi#(犊7m}&!ZEI"lѳ&9bp헸V %5Wv?,ɹ

定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间 零到正无穷 左闭右开 上的图像 与 f(x)的图像重合,设a>b>0,四个不等式:f(b)-f(-a)>g(a)-g(-b)f(b)-f(-a)g(b)-g(-a)f(a)-f(-b)g(b)
定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间 零到正无穷 左闭右开 上的图像 与 f(x)的图像重合,设a>b>0,四个不等式:
f(b)-f(-a)>g(a)-g(-b)
f(b)-f(-a)g(b)-g(-a)
f(a)-f(-b)g(b)
所以g(b)+g(a)>g(a)-g(b)
同理,f(a)-f(-b)=f(a)-(-f(b))=f(b)+f(a)=g(b)+g(a)
g(b)-g(-a) =g(b)-g(a) f(0)
所以f(a)-f(-b)>g(b)-g(-a)
不懂为什么g(a)>g(b)就得出g(b)+g(a)>g(a)-g(b)的结论!楼主举出一个反例,假设f(x)是二四象限上的反比例函数,g(b)+g(a)>g(a)-g(b)便不成立.智商有限,

定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间 零到正无穷 左闭右开 上的图像 与 f(x)的图像重合,设a>b>0,四个不等式:f(b)-f(-a)>g(a)-g(-b)f(b)-f(-a)g(b)-g(-a)f(a)-f(-b)g(b)
f(x)在R上是递增的,如果是反比例函数只能说分别在两个区间内是递增的.