华师版第28章第一节圆的认识说课稿谁有?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 18:50:17
华师版第28章第一节圆的认识说课稿谁有?
xZr"}Ύ`#| @B wn|Ne4BUYY'3OV?*[jEE/ܸ`#|}jtᇿvw?nj7t3y o~vעÎ>)ĝI4d+]嗢 #rU!tO(0 Ε_Ȩ_ͩ2ŝvTͫ' vTճ#:dzF_:6!&Yz_^dؒn̲W×JtsVYm+R5yw_C.qvHU+vSVQvAɉ( Q " P傥TqUPV#WF+Yq甮 ivt1p>ԢQܹ=~y lICmA)GSt~ xU31ق0xVK&^IhvJFf ܮ*}ن:;P7x?CL(mS߅i-@_~}; 0b"GPvՃit]q&Y^m/nYu_<m}O:2aZ6#Sڗ5DrZ 5rղq-vKuP ]{OmkqAnհ}VKy 0.mω$Gs=0B馫ǘ= 7z6 uvzY+W=wgD B 6=,)2X޾<_C1tV8TuytAM!tg?5vǧHV}CdHG]gtoD3+]E}DL&", |QګfD4vi9ޝb =a}Զ_m!8>JO$]6]H% G3[;U aVȫG׏y2ƑU;kT3ax ΐd`&;\OodQn9vu7G:c.{Tջ sw U=:rY" ԍ)E{IFdljD-jiU+d f+<.f:̂w7y.;kzHSP9[WkW r,3С7i!M+f gsN&=Fi~I!NLkHAIP xh . l2d?%lOO` AVm~u!fyH@|HZ8PP]/})'r[⣁Φ%Rd$d K"QIqfTmqپӵ w=LXڷjF{[j8{Qha99yVw\b+:ۇ$:ĉU[}BrO>td>ڛm31Ňӄ[h]n/H7!IJ.g=(?' bJQ_EE<(+՚[wk$}$9ƢChN s6lX<@-Z&rVHCԚSA"1[G -I+b.IhyAI^ h:Hr&OV}cdÖ?f0}ۆ踻&+EP͏MϷiE|ӱx,K 2u6YT.%8 Y'ieuLwdjdSR5SI&e^B)¦y>Ō6#Б"i9|GtސngY捆Yy\p Bҫa !\3:2 _CO}s{U֭ :o|H<$ҥbf 7m^/Il}0 l0c3KrQĵP]o#Ɲw4&h05DXt%+$(vHŞ!g6blz.JJo4C_3}/XJϨIumcJ0fU)bfğ$vwkcZ803鷌IH#p!QOGx'9d6b0`* 0$nd v]y+,ŝ0 n0[T(>;4S~3bT&7@Nխ/uAusL' ]Dc~@Σ];$ƷvA4 :h3i"Fi`O'|y7,|G?üê3'p[!>n& `7#Gs*籋lTˑe?W'daK HT `>qւ *'p妈wIu,N1oU\td80`5)#+DGKl7T#͗U {'Cw%ydEF9DbJҊ66 F0'S2 Mys?%Yq$cȸV@%D2]oG^KgX7(ZS ,Ra˚}&.v & LG$+^;B{\rVO!QJQo7|LlxSkɶ-'GY&CQ́I 2R83Y{NP'tY^B Q m# _PFq-k(-qzmSyXNm ?[V / W i{ $zݞ^-$~^Iէjt!tr }vy.QSLJ`2I"UFt'+ ّB]շÛGԦO! 'F^ zցג֬ic[jT#1}q qidVB j萴= (dم ܇ vg)0)S_HKfDKEYR;O%6#7`ʭ{D=(ӰzUl`7쌍\zj.&aG<ēj`d\ ZWw0g`l۪tբfKzod7֚Nv\I MԺs+.|"OAϼiL j\_IIrMHe'ky 9re 7!҃}$tZp6OM,]HzBi~&iEQ89zoS-`|X<'k<  ;@U|nHEe{H{~up#s嗤o̰]~`#m6`O ⍜:#zCu0l7r / rWg]nW.-JS7җ !K\d@ UBñ€[Θ3>LqF^Cc ;q}?P[)myǤdRAbB{;‘i_:>owh"m$-F=ʐ,D2>䧹ƛ̐, [5Fa0EȽr*B3V:0*8x' ӻ|޵IֵU5 E0lH.!|E"/Ya͆ZXM !IÊ?G^H.Sכ59#(ȆÓW<?O{

华师版第28章第一节圆的认识说课稿谁有?
华师版第28章第一节圆的认识说课稿谁有?

华师版第28章第一节圆的认识说课稿谁有?
圆的认识教案
(一) 、目标设置
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标.
1、知识目标:认识圆各部分名称,掌握圆的特征和画圆的方法.
2、技能目标:在已有知识经验基础上,熟练掌握用圆规画圆,培养学生实际操作能力.
3、情感目标:通过生动画面、图像、演示让学生感受生活中圆的存在与作用,感受其神奇与蕴含的美学价值.
根据本课的设计理念和目标设置确定本课的教学重点即通过多媒体认识圆各部分名称,掌握圆的特征.
教学难点在于掌握圆的特征,能熟练地画圆.
(二)、教法、学法
根据本课的目标设置和重难点特制定
1、教法:先学后教、合作探究法等.
2、学法:顺学而导、互助学习如师生互动学习法等.
二、教学流程
(一)、情景导入
同学们在做投沙包游戏的时候要讲公平合理的原则,下面有四种设计方案,请你说说哪一种方案最好,为什么?
师:对于圆,同学们一定不会感到陌生吧?(是)生活中,你们在哪儿见到过圆形?
 师:今天,张老师也给大家带来一些.
通过多媒体、课件演示,创设情景,展现大自然中随时都有圆的存在.让学生感受到圆的神奇进而激发学生的学习兴趣,顺利地导入到新课之中.(课件展示,宇宙星际、其它星球、地球、月亮和生活中的日落等美景以及大自然中的物体如鲜花等)
师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇.今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?板书课题《圆的认识》.
课件展示图形分类(圆和非圆).指出以前我们学的平面图形都是有线段围成的平面图形,今天我们学的圆是曲线围成的封闭图形,同时展示一条曲线弯成圆的形状.
(二)、探究新知
1、创作圆:学生在准备好的纸上作圆,方法工具不限.同时教师演示一两种作圆的过程方法,以启迪学生.) 师:今天,每个小组还准备了很多其他的材料.你能利用这些材料,试着画出一个圆吗?
  生:能.
(学生以小组为单位,利用手中的工具和材料画圆.)
适时点评,展示学生的作品.
2、让学生把画好的圆对折,展开,再对折,展开,折痕都相交于一点,这一点叫圆心,用字母O表示,以此学习半径、直径概念.
(通过自学,学生认识完半径、直径、圆心等概念后.)课件展示
3、出示习题,实时反馈.
4、知识延伸
(1)我会向学生提问:刚才同学们画圆时都用到了些什么工具和方法啊?和大家交流借鉴一下经验好吗?学生:学生会说出不同的方法和工具…我再课件播放(可能会用到的工具如硬币、线、笔、圆规等).
(2)此时我会装作很着急的样子向学生问:老师想画一个直径8厘米的圆可不可以用一块钱的硬币哦?为什么啊?生:学生会从大小不符合等方面来说明不行.此时我又会说那我要是想画一个半径6厘米的圆又该怎么办呢?为什么啊?生:可能会比较为难(我再适时从大小符合以及方便等方面慢慢导出学生说出用圆规画)
(3)接下来我再小结得出画大小不同的圆我们通常用圆规来画——并演示圆规确定半径的方法以及圆规画圆的方法的重复过程(并得出结论用圆规画圆可以画出大小不同的圆、也可以得到我们想要的圆,再次论证得出半径越大,圆就越大.半径越小、圆就越小),
在讲的同时板书画圆的方法:一、定圆心,二、定半径,三、画圆.
(三)、知识反馈
1、请同学们用圆规画出一个半径5厘米的圆并用字母标出圆心、半径和直径,画好之后相互检查以巩固刚才所学的方法.
  师:学到现在,关于圆,该有的知识我们也探讨得差不多了.那你们觉得还有没有什么值得我们深入地去研究?
(四)
  生:有(自信地).
  师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具.待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现.两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流.第二,实在没啥研究了,别急,老师还为你们准备一份研究提示,或许对大家的研究会有所帮助.课件展示自学提纲.
  (随后,伴随着优美的音乐,学生们以小组为单位,展开研究,并将研究的成果记录在纸上,并在小组内先进行交流)
  师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分.下面,就让我们一起来分享大家的发现吧!
  生:我们小组发现圆有无数条半径.
  师:能说说你们是怎么发现的吗?
  生:我们组是通过折发现的.把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径.
  生:我们组是通过画得出这一发现的.只要你不停地画,你会在圆里画出无数条半径.
  生:我们组没有折,也没有画,而是直接想出来的.
  师:噢?能具体说说吗?
  生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?
  师:看来,各个小组用不同的方法,都得出了同样的发现.至少直径有无数条,还需不需要再说说理由了?
  生:不需要了,因为道理是一样的.
  师:关于半径或直径,还有哪些新发现?
  生:我们小组还发现,所有的半径或直径长度都相等.
  师:能说说你们的想法吗?
  生:我们组是通过量发现的.先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样.
  生:我们组是折的.将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等.直径长度相等,道理应该是一样的.
  生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等.
  生:关于这一发现,我有一点补充.因为不同的圆,半径其实是不一样长的.所以应该加上“在同一圆内”,这一发现才准确.
  师:大家觉得他的这一补充怎么样?
  生:有道理.
  师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善.还有什么新的发现吗?
  生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍.
  师:你们是怎么发现的?
  生:我们是动手量出来的.
  生:我们是动手折出来的.
  生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽……
  师:看来,大家的想象力还真丰富.
  生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小.
  师:圆的大小和它的半径有关,那它的位置和什么有关呢?
  生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了.
  生:我们组还发现,圆是世界上最美的图形.
  师:能说说你们是怎样想的吗?
  生:生活中,我们到处都能找到圆.如果没有了圆,我们生活的世界一定会缺乏生机
  生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶……
  师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示.没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?
  生:好.
(四) 
师:其实,早在二千多年前,我国古代就有了关于圆的精确记载.墨子在他的着作中这样描述道:“圆,一中同长也.”所谓一中,就是指一个――
  生:圆心.
  师:那同长又指什么呢?大胆猜猜看.
  生:半径一样长.
  生:直径一样长.
  师:这一发现,和刚才大家的发现怎么样?
  生:完全一致.
  师:更何况,我古代这一发现要比西方整整早一千多年.听到这里,同学们感觉如何?
  生:特别的自豪.
  生:特别的骄傲.
  生:我觉得我国古代的人民非常有智慧.
(五)、反馈练习(课件展示)