设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为A.0 B.12 C.14 D.16

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:32:36
设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为A.0 B.12 C.14 D.16
x͐JP_%ĤI": z 3V | r(R:p(e-W!t3Vƌ>`-}ĉ(4ieRT-$ d n+~:O

设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为A.0 B.12 C.14 D.16
设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为
A.0 B.12 C.14 D.16

设函数f(x)对x∈R都满足f(x+2)=f(2-x),且方程f(x)=0恰有7个不同的实数根,则这7个实根的和为A.0 B.12 C.14 D.16
答案是14 f(2+x)=f(2-x) 所以涵数的根是关于x=2对称的(涵数奇偶均可),7个根则是有一个就为2,其余两两对称,且和均为4,(6/2)*4+2=14 嘿嘿 明白了不?

设f(x)是R上的函数,且满足f(0)=1,且对x,y∈R都有f(x-y)=f(x)-y(2x-y+1),则f(x)的表达式是? 设函数f(x)对任意x∈R都满足f(2+x)=f(2-x),且方程f(x)=0恰有5个不同的实数根,则这5个实根的和为? 设函数Y=f(x)是定义域在R+上的函数,并且满足下面三个条件(1)对任意正数X.Y,都有f(xy)=f(x)+f(y);(2)当x>1时,f(x) 设f(x)是R上的函数,且满足f(0)=1,并对任意实数x,y,都有f(x-y)=f(x)-y(2x-y+1),求f(x)表达式. 设f(x)是R上的函数,满足f(0)=1,并且对任意实数x,y,都有f(x-y)=f(x)-y(2x-y+1),求f(x)的表达式. 设f(x )是R上的函数,且满足f(0)=1,并且对任意实数x,y,都有f(x-y)=f(x)-y(2x-y+1),求f(x)的表达式. 设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x) 设f(x)的定义域在实数集R上的函数,满足f(0)=1,且对任意实数ab都有f(a-b)=f(a)-b(2a-b+1),求f(x)2 ) 函数f(x)(x属于(-1,1))满足2f(x)-f(-x)=lg(x+1),求f(x) 一道关于函数的理数题,会的来看看!设f(x)是R上的函数,且满足f(0)=1,且对x,y∈R都有f(x-y)=f(x)-y(2x-y+1),则f(x)的表达式f(x)=_____. 已知函数满足对任意xy属于R都有f(x+y)=f(x)*f(y)-f(x)-f(y)+2成立,且x2,证明x 设f(x)是R上的函数,且满足f(0)=1,并且对任意实数,都有y(x-y0=f(x)-y(2x+y+1)成立,则f(x)=?.......... 已知函数f(x)=|2x-m|和g(x)=-x方+c(m,c为常数),且对任意x属于R,都有f(x+3)=f(-x)恒成立设函数F(x)满足对任意x属于R,都有F(x)=F(-x),且当x属于【0,3】时,F(x)=f(x),若存在x1,x2属于【-1,3】,使得|F(x1)-g(x2)| 定义在R+上的函数f(x)满足:1.对任意x,y∈R+,都有f(xy)=f(x)+f(y) 2.当x>1时,f定义在R+上的函数f(x)满足:1.对任意x,y∈R,都有f(xy)=f(x)+f(y) 2.当x>1时,f(x)>0.1.求证:f(x)在R+上是增函数2.求证:f(y/x)=f(y)-f(x 设函数f(x)=2sin(π/2x+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)对于这个问题,为什么当f(x1)=-2,f(x2)=2 原式才满足我还想问f(x1)≤f(x)≤f(x2)我有点不懂 设函数f(x)在R上可导,且对任意x∈R有|f‘(x)| 设函数f(x)对任意x∈R都有f(x+3)=-1/f(x)且当x∈[1,3]时,f(x)=2x,f(2012)=? 设函数y=f(X)是定义在R+上的函数,并且满足下面三个条件:(1)对整数x、y都有f(xy)=f(x)+f(y)...设函数y=f(X)是定义在R+上的函数,并且满足下面三个条件:(1)对整数x、y都有f(xy)=f(x)+f(y);(2)当x> 设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,...设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,求f(x)在区间[-3,3]上的最大值和最小值.