已知x+1/x=5/2,求x^3+1/(x^3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:30:48
已知x+1/x=5/2,求x^3+1/(x^3)
xOo0ƿJU4Kzg 5,ET L#M:U웠ۍ83`ǯϫY8q˨(3rh=/ zzdօɨߏɇtb|Ks\sɚi!bK9ڎv9 rZKƋ}lA%\[3۳*g rG^3A[oUd;;/26\wQR+ڤ7HkG*7懓bnvv^[ҝF>~*jl{ ]nf`8ȻRѳn^$i$yAS7=!P8LE>d#}P I,](0vcWS2f>1$GFQ7bq,b}*IJ) |Y.\#

已知x+1/x=5/2,求x^3+1/(x^3)
已知x+1/x=5/2,求x^3+1/(x^3)

已知x+1/x=5/2,求x^3+1/(x^3)

x+1/x=5/2
两边平方得:
x²+2+1/x²=25/4

x²+1/x²=25/4-2=17/4
∴x³+(1/x)³
=(x+1/x)(x²-1+1/x²)
=5/2×(17/4-1)
=5/2×(13/4)
=65/8

x²+1/x²

=(x+1/x)²-2
=(5/2)²-2
=17/4

于是
x³+1/x³

=(x+1/x)(x²-x*1/x+1/x²)

=(x+1/x)(x²+1/x²-1)

=5/2*(17/4-1)

=5/2*13/4

=65/8


图片格式为