E和F是椭圆x^2/4+y^2=1的两个焦点,P是椭圆上任意一点,则|PE|*|PF|的最小值是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 17:24:28
E和F是椭圆x^2/4+y^2=1的两个焦点,P是椭圆上任意一点,则|PE|*|PF|的最小值是多少?
x)s}:ٌϖ}:"HD2';<ٱy˲M;uz{';@2O;fhu=tCӆ=@ OzaMR>l/ulUp}P [+l4S+44uT,1H75H z$ g"g`oytZţh]#X@y \H-4s3lMtm m @ 

E和F是椭圆x^2/4+y^2=1的两个焦点,P是椭圆上任意一点,则|PE|*|PF|的最小值是多少?
E和F是椭圆x^2/4+y^2=1的两个焦点,P是椭圆上任意一点,则|PE|*|PF|的最小值是多少?

E和F是椭圆x^2/4+y^2=1的两个焦点,P是椭圆上任意一点,则|PE|*|PF|的最小值是多少?
∵ E、F是焦点,P是椭圆上任意一点
∴ |PE|*|PF|
= (a+ex)*(a-ex)
= a^2-e^2*x^2
= a^2-(a^2-b^2)/a^2*x^2
= 4 - 3/4*x^2
又∵x∈[-2,2]
∴x^2∈[0,4]
∴(|PE| * |PF|)min=4-3=1