求不定积分∫xcos2xdx 求过程答案!谢谢!
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 13:44:37
x){Ɏާf=_iGۣF)
@۟~vʳ/6,"E"}rِmPDBJXVAPHYSF!83U,PH
BTVpƢT3фD 1o0ٻ o`1H(fThADFPQ@q6 }l $y ء
求不定积分∫xcos2xdx 求过程答案!谢谢!
求不定积分∫xcos2xdx 求过程答案!谢谢!
求不定积分∫xcos2xdx 求过程答案!谢谢!
∫ xcos2x dx
= (1/2)∫ xcos2x d2x
= (1/2)∫ x dsin2x
= (1/2)xsin2x - (1/2)∫ sin2x dx
= (1/2)xsin2x - (1/2)(1/2)(-cos2x) + C
= (1/2)xsin2x + (1/4)cos2x + C
∫xcos2xdx =∫x2cos2xdx/2 =(xsin2x-∫sin2xdx)/2=(xsinx-∫2sin2xdx/2)/2=xsinx/2+cos2x/4
4sinx^2-2x^2