已知二次函数Y=F[X]的图像是开口向上的抛物线,F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:55:10
已知二次函数Y=F[X]的图像是开口向上的抛物线,F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能
xZ[SW+z4eIFD}oH*·Ӗ+yoɺ-#t%[ AAwfΙa>=3[15ӧO}[~<+NWz')w"֗/?;FaI"7buMo%^&FWs/t>4/ELEd)""Z]'Fk$T[/W@VNSFabcV#>,W12%ݬGx~<0?f;]wj_*z+%6r)##ePyrK~s>dz8G:h3/^\HAt!f6Xzx/iy6MN}!,Owm눪2rg3yt3 e ;|ߍdߘ}7|Bt_}?3~x#ZV_d)˓3;z'u19@q&@$@ų^ "$} d>|a8Ub^F "_} 6ev`g=-|֋[{cXe-S 3#NB ,z~⭷_1{lTYK?!(kaiC>_IA?!cl`d9aM;l-"[y|H `>jDAL QOXyOU ;aK˲"eCݭ;tWcwQ+VQRBkT,396\v"NY~8gat[k0|+`pIƪ+$uu8n|fN6]6W>8%spD_6]n@ Yl\8˃E(LC6VUypf(3 pG^Ixf @x359)4jxt{G񧆋EbML'@)sF~<^NڧwU$J{{l`/  WǏ9U=4G"~ʖ%?Fh-=h<a<#/yy{89&>Gc.R%WWɛlY*KW-;5cN-, hu b-ߦ(Q|򽆶&^Wq~ <5_{g/2XUT5OKœ'3Q%%&9A;ASl {sIp;\>3*ZCh5핱EF㐻:\A82`3.w,"y,83 N>{gN?.HßݰyTbW[xIJ%e%jv]YOjg:ovƟ =\M2'7qz+ qs5ր֕Z[bU@GR['hso+

已知二次函数Y=F[X]的图像是开口向上的抛物线,F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能
已知二次函数Y=F[X]的图像是开口向上的抛物线,F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能写出其他解析式吗?
不好意思写错了,F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值不大于0

已知二次函数Y=F[X]的图像是开口向上的抛物线,F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能
不大于0就是小于等于0
假设是f(-5)0,f(-5)0
则对称轴在-5和4之间
不妨让对称轴尽量靠中间
x=0
f(x)=x^2+h
f(4)=h+16>0
f(-1)=h+10
则对称轴在-1和7之间
不妨让对称轴尽量靠中间
x=3
f(x)=(x-3)^2+h
f(4)=h+10
假设h=-5
则f(x)=(x-3)^2-5=x^2-6x+4
假设f(7)0,f(7)

最大值只会在-5或7点取得最大值,
这样的解析式有很多,例如:y=(x+5)^2-100

这是一个开放性题目,就是没有固定解的。
你可以画个图,只让F(7)大于0,然后根据自己做的图写出方程。
你也可以设计一个方程,比如y=x^2-48,就满足这个条件,再画图。

用开口方向,对称轴,以及与x轴的交点控制抛物线的位置
假如开口向上,则有两种情况是满足条件的
1 与x轴交点一个小于-5,一个在-5和-1之间,对称轴小于等于-5,此时有且只有F[-5]大于0
2 与x轴交点一个大于7,一个在4到7之间,对称轴大于等于7,此时有且只有F[7]大于0
假设开口向下,也有两种情况是满足条件的
1 与x轴交点一个在-5和...

全部展开

用开口方向,对称轴,以及与x轴的交点控制抛物线的位置
假如开口向上,则有两种情况是满足条件的
1 与x轴交点一个小于-5,一个在-5和-1之间,对称轴小于等于-5,此时有且只有F[-5]大于0
2 与x轴交点一个大于7,一个在4到7之间,对称轴大于等于7,此时有且只有F[7]大于0
假设开口向下,也有两种情况是满足条件的
1 与x轴交点一个在-5和-1之间,一个大于7,对称轴大于等于-1即可,此时有且只有F[-5]大于0
2 与x轴交点一个在4到7之间,一个小于-5,对称轴小于等于4即可,此时有且只有F[7]大于0
这是一般情况,你随便设几个特殊值,比如与x轴的两个交点设出来,就随便可以求出函数解析式了
你改题目,我把开口上下改了就可以了

收起

用开口方向,对称轴,以及与x轴的交点控制抛物线的位置
开口向下有两种情况满足条件
1 与x轴交点一个小于-5,一个在-5和-1之间,对称轴小于等于-5,此时有且只有F[-5]大于0
2 与x轴交点一个大于7,一个在4到7之间,对称轴大于等于7,此时有且只有F[7]大于0
假设开口向上,也有两种情况是满足条件的
1 与x轴交点一个在-5和-1之间,一...

全部展开

用开口方向,对称轴,以及与x轴的交点控制抛物线的位置
开口向下有两种情况满足条件
1 与x轴交点一个小于-5,一个在-5和-1之间,对称轴小于等于-5,此时有且只有F[-5]大于0
2 与x轴交点一个大于7,一个在4到7之间,对称轴大于等于7,此时有且只有F[7]大于0
假设开口向上,也有两种情况是满足条件的
1 与x轴交点一个在-5和-1之间,一个大于7,对称轴大于等于-1即可,此时有且只有F[-5]大于0
2 与x轴交点一个在4到7之间,一个小于-5,对称轴小于等于4即可,此时有且只有F[7]大于0
你只要随便设几个特殊值,就可以求出来了。
呃,懒得想了,睡觉去了。

收起

想象力很重要
首先,想象一个xy坐标轴,想象出x轴上-5,-1,4,7这4个点
然后,想象出一个开口向上的抛物线在xy坐标轴上移动,怎么样移动才能让F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0呢?
很明显,抛物线和x轴交点只有2种情况:
a,左边的交点在-5的左边,右边交点在4和7之间;
b,左边的交点在-5和-1之...

全部展开

想象力很重要
首先,想象一个xy坐标轴,想象出x轴上-5,-1,4,7这4个点
然后,想象出一个开口向上的抛物线在xy坐标轴上移动,怎么样移动才能让F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0呢?
很明显,抛物线和x轴交点只有2种情况:
a,左边的交点在-5的左边,右边交点在4和7之间;
b,左边的交点在-5和-1之间,右边交点在7的右边。
至此,我们按照题目,把抛物线相对的固定下来了(这里的相对固定是做这类开放性题目的重中之重,也是最难的地方,我们在固定这个抛物线时,既要做到题目中的所有条件都在这里得到体现,一条不少,(例如上面推论的2个情况,缺一不可,当然,在此题少了一个无所谓,那只是因为此题需要的答案比较简单或者说是宽松)又要做到这抛物线也只能推论出题目中的条件,不能随意给题目随便添加条件,(例如有些人会想进死胡同,认为抛物线的中轴线只能在-1和4之间)总之一句话,相对固定下来的图和题目,要让人只看一样,就能做出正确的答案,这才叫把抛物线相对固定下来,也就是达到了文字到图的完美转换)
再然后,题目只要求你写出其中一个函数,也就是说是描绘出的众多抛物线中的任意一个,我们可以随便给他定义抛物线和x轴的2个交点(当然要满足上面条件),然后写出方程就是了。
改了题目一样做,上面说那么多你还不会,那你200分就百瞎了

收起

不定解啊

可以写出两族这种函数:
1.只F(7)>0。
F(x)有根a,b:条件是a≤-5,4≤b<7.
F(x)=c(x-a)(x-b).c>0.
2.只F(-5)>0.
F(x)有根e,d:条件是-5<e≤-1,7≤d.
F(x)=c(x-e)(x-d).c>0.
因为a,b,c,d,e的条件很宽,这种函数有无限多个。
并且,不难看...

全部展开

可以写出两族这种函数:
1.只F(7)>0。
F(x)有根a,b:条件是a≤-5,4≤b<7.
F(x)=c(x-a)(x-b).c>0.
2.只F(-5)>0.
F(x)有根e,d:条件是-5<e≤-1,7≤d.
F(x)=c(x-e)(x-d).c>0.
因为a,b,c,d,e的条件很宽,这种函数有无限多个。
并且,不难看出,每个满足条件的二次函数,都一定包含在这两族函数之中。

收起

我感觉这样的函数太多的吧 要满足以上条件的很多啊 、

没看懂

1.只F(7)>0。
F(x)有根a,b:条件是a≤-5,4≤b<7.
F(x)=c(x-a)(x-b).c>0.
2.只F(-5)>0.
F(x)有根e,d:条件是-5<e≤-1,7≤d.
F(x)=c(x-e)(x-d).c>0.
因为a,b,c,d,e的条件很宽,这种函数有无限多个。
不难看出,每个满足条件的二次函数,都一...

全部展开

1.只F(7)>0。
F(x)有根a,b:条件是a≤-5,4≤b<7.
F(x)=c(x-a)(x-b).c>0.
2.只F(-5)>0.
F(x)有根e,d:条件是-5<e≤-1,7≤d.
F(x)=c(x-e)(x-d).c>0.
因为a,b,c,d,e的条件很宽,这种函数有无限多个。
不难看出,每个满足条件的二次函数,都一定包含在这两族函数之中。 至于画,电脑上画不出

收起

我是文盲.帮不到你.

给你讲四个最简单的,
当X=-1的时候,Y=0的所有开口向上的函数
当X=-5的时候,Y=0....................
当X=4的时候,Y=0................
当X=7的时候,Y=0.....................
这是4个值分别只有一个=0的情况
小于0的情况实在太多,简单说一个:保证F[-5]>...

全部展开

给你讲四个最简单的,
当X=-1的时候,Y=0的所有开口向上的函数
当X=-5的时候,Y=0....................
当X=4的时候,Y=0................
当X=7的时候,Y=0.....................
这是4个值分别只有一个=0的情况
小于0的情况实在太多,简单说一个:保证F[-5]>0,F[-1]<0,中心线在-1到-5之间的所有开口向上函数均符合条件。其余雷同分析即可。

收起

已知二次函数y=f(x)的图像是开口向上的抛物线.已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值不大于0.分析这样的抛物线的位置特征,并写 已知二次函数y=f(x)``````已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5),f(-1),f(4),f(7)这四个函数值中有而且只有一个值不大于0,画草图分析这样的抛物线的位置特征,并且写出满足已知条 已知二次函数f(x)=ax^2+(a^2+b)x+c的图像开口向上已知二次函数f(x)=ax^2+(a^2+b)x+c的图像开口向上,且f(0)=1,f(1)=0,则实数b取值范围是_____b〈-1why? 已知函数f'(x)是函数f(x)的导函数,如果f'(x)是二次函数,f'(x)的图像开口向上,顶点坐标为(1,√3),那么曲线y=f(x)上任意一点处的切线的倾斜角α的取值范围为 已知y=ax2+bx+c,求在什么条件下:Y是x的正比例函数.Y是x的一次函数.y是x的二次函数.y=f(x)的图像是顶点再原点并且开口向上的抛物线. 二次函数y=f(x)的图像是开口向上的抛物线,其对称轴方程是x-3=0,请比较f(0)与f(5)的大小. 已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5),f(-1),f(4),f(7)这四个函数值中有且只有一个值不大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还 已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值大于0.分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能写出其 已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5),f(-1),f(4),f(7)这四个函数值中有且只有一个值不大于0,画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式网上查了. 已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值不大于0,画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还 已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值不大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还 已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5),f(-1),f(4),f(7)这四个函数值中有且只有一个值不大于0,画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式 已知二次函数Y=F[X]的图像是开口向上的抛物线,F[-5]、F[-1]、F[4]、F[7]这四个函数值中有且只有一个值大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函数解析式,你还能 二次函数y等于2x平方减四的图像开口向上,对称轴是 顶点坐标是二次函数y等于2x平方减四的图像开口向上,对称轴是 顶点坐标是 已知二次函数y=f(x)的图像是开口向上的抛物线,f(-5)、f(-1)、f(4)、f(7)这四个函数值中有且只有一个值不大于0.画草图分析这样的抛物线的位置特征,并写出满足已知条件的一个函 函数f(x)=log2|x|,g(x)=-的x的平方+2,则f(x)乘g(x)的图像是是图像开口都向上,还是图像开口都向下,还是左边的图像开口向上右边的图像开口向下,再还是左边的图像开口向下右边的图像开口向上? 已知二次函数y=(m-1)x^m²-3m+2的图像开口向上,则m=________ 1.已知二次函数y=(m-1)x^(m^2-3m+2)的图像开口向上,则M=__ 2.已知二次函数y=(x-1)^2+(x-3)^2,则当x=__时,1.已知二次函数y=(m-1)x^(m^2-3m+2)的图像开口向上,则M=__2.已知二次函数y=(x-1)^2+(x-3)^2,则当x=__时,函数取