f(x)=-2√3sin^2x+sin2x+√3求函数f(x)的最小正周期和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:25:19
xPAJ@Nb
!$9PB`6YI&jE]FliR;H$r'iэYF1g>ܮl6+" 14c kyys .qA"D_)hj?IH|7MސDIlE)8#"Oά\YasZno'[%
%RIU Y54J,Qv2~fޛ^f}X܀!f2=/R,2 lр!(\/O@:7=);
f(x)=-2√3sin^2x+sin2x+√3求函数f(x)的最小正周期和最小值
f(x)=-2√3sin^2x+sin2x+√3
求函数f(x)的最小正周期和最小值
f(x)=-2√3sin^2x+sin2x+√3求函数f(x)的最小正周期和最小值
f(x)=-2√3sin^2x+sin2x+√3
=-2根号3*1/2(1-cos2x)+sin2x+根号3
=根号3cos2x+sin2x
=2(根号3/2cos2x+1/2sin2x)
=2sin(pai/3+2x)
所以最小周期是:
2pai/2=pai
最小值是:
当sin(pai/3+2x)=-1
f(x)min=-2
π~~~~~,前两项经过整理能够得到cos2π,与sin2π,插入辅助角,即可得到答案!