2^n*sin(x/2^n),n→∞的极限(x≠0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 07:13:14
x)3*Ө4uMz1g_Μ~OGţt$铢\Άds2sPmA1}
C0 Ԏ}>emv>ٽWnOv/6$D~qAb P:
2^n*sin(x/2^n),n→∞的极限(x≠0)
2^n*sin(x/2^n),n→∞的极限(x≠0)
2^n*sin(x/2^n),n→∞的极限(x≠0)
lim 2^n*sin(x/2^n)
=lim sin(x/2^n)/(1/2^n) (sin(x/2^n)用其等价无穷小1/2^n替代)
=lim (x/2^n)/(1/2^n)
=x
2^n*sin(x/2^n),n→∞的极限(x≠0)
Lim(n→∞) 2的n次方sin x/2的n次等于多少?
lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]=?
lim 2^n *sin(x/2^n)n→∞求极限
lim(n→∞){2^n[sin(x/2^n)]}求详细过程,谢谢!
利用无穷小的性质求极限lim(x→+∞)[(n^2+1)/n^3]sin(n!)=
f(n)=sin(nπ/4+x),求f(n)f(n+4)f(n+2)f(n+6)的值(其中n∈Z)
大学微积分的题目 lim(x→∞)(1^n+2^n+3^n)^1/n
(n→∞)时lim(2∧n)*(sin(x/2∧n))的极限x为不等于零的常数.结果是x,
微积分:关于当(x→∞),(1+1/n)^n的极限的例题中,设x(n)=(1+1/n)^n,(n=1,2,…),证明数列{x(n)}是单调増加且有界,由牛顿二项公式 有x(n)=(1+1/n)^n=1+n/1!*1/n+[n(n-1)]/2!*(1/n)^2+[n(n-1)(n-2)]/3!*(1/n)^3+…+{n(n-1)
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
x→∞ lim(5n/2)sin(2π/n)
lim(n→∞) (cos x/n)^n^2
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求是lim(n→∞) 1/n(2n!/n!)^1/n 不好意思
lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
当n趋于无穷时,求[sin(π/n)/(n+1)+sin(2π/n)/(n+1/2)+.sinπ/(n+1/n)]的极限
sin(n*π/2)*sin(n*π/3)*sin(n*π/4)*...*sin(n*π/n-1) 求化简成一个关于n的表达式,
lim x→n (√n+1-√n)*√(n+1/2)lim x n→∞ (√n+1-√n)*√(n+1/2)