19.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:13:20
19.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.
xSNQ2̝T;&9>ffZhQ-ħZ PBKQԶ m⧔9iKBbLLL&k/':,ΒB"k;w0v+i.C:F+[qX#bRIJQNCx:T _uUR(8 9D*v Ix{v۱ LoŠHzX?) *htPiEaQL>tZH>|{~f(mD2MӺ=D22/Wg٫v (b!ܭ0" Ȝ٭*/Civ9 s+

19.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.
19.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.

19.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.
题目应该是使CE=二分之一BC吧
(1)∵F为AD中点 ∴AF=DF 又ABCD为平行四边形 ∴AD=BC且AD∥BC
又CE=1/2BC 所以CE∥DF且CE=DF ∴CEDF为平行四边形
(2)AB=CD=4 ∵AD=6 ∴DF=CE=3 ∵∠B=60° ∴∠DCE=60°
然后用余弦定理就可以求出DE了
COS60°=(CE²+CD²-DE²)/2CE*CD
∴DE=根号下13

哈哈哈哈哈哈,初一的?

AD=BC,BC=CE,∴AD=CE【1】
又∵AD//BC,即AD//CE【2】
有【1】【2】得CEDF为平行四边形。
(此时A点与F点重合)
第2问,过D点向CE边作垂线,设垂足为O。(也就是平行四边形的高).
则在△CDO中 ∠DCO= ∠B=60°,CD=AB=4.
可得高DO=2√3,CO=2.
在△DOE中,OE=CE-CO=6...

全部展开

AD=BC,BC=CE,∴AD=CE【1】
又∵AD//BC,即AD//CE【2】
有【1】【2】得CEDF为平行四边形。
(此时A点与F点重合)
第2问,过D点向CE边作垂线,设垂足为O。(也就是平行四边形的高).
则在△CDO中 ∠DCO= ∠B=60°,CD=AB=4.
可得高DO=2√3,CO=2.
在△DOE中,OE=CE-CO=6-2=4,DO=2√3
由勾股定理得出DE=2√7

收起