求证sin^4a=1/8(3-4cos^2a+cos4a)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 06:29:08
求证sin^4a=1/8(3-4cos^2a+cos4a)
x){̼8D[C} {zMIMR>Q l7D%jBT@䠢 "(757+P!ᛀ^\gr?^

求证sin^4a=1/8(3-4cos^2a+cos4a)
求证sin^4a=1/8(3-4cos^2a+cos4a)

求证sin^4a=1/8(3-4cos^2a+cos4a)
sin^4a=sin^2a(1-cos^2a)
=sin^2a-sin^2acos^2a
=(1-cos2a)/2-1/4sin^2 2a
=(1-cos2a)/2-1/4*(1-cos4a)/2
=1/8(3-4cos^2a+cos4a)