过A点(2,4)分别作XY轴的垂线,垂足为M.N,若点P从O点出发,沿OM做匀速运动,1分钟可到达M点,同时点Q从M点出发,沿MA做匀速运动,一分钟可到达A点.{1}求经过多少时间,线段PQ的长度为2.{2}写出线段PQ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:04:37
过A点(2,4)分别作XY轴的垂线,垂足为M.N,若点P从O点出发,沿OM做匀速运动,1分钟可到达M点,同时点Q从M点出发,沿MA做匀速运动,一分钟可到达A点.{1}求经过多少时间,线段PQ的长度为2.{2}写出线段PQ
过A点(2,4)分别作XY轴的垂线,垂足为M.N,若点P从O点出发,沿OM做匀速运动,
1分钟可到达M点,同时点Q从M点出发,沿MA做匀速运动,一分钟可到达A点.{1}求经过多少时间,线段PQ的长度为2.
{2}写出线段PQ长度的平方y与时间t的关系式.这是《经典练习》数学初三第22页32题 我还会送50分的,
过A点(2,4)分别作XY轴的垂线,垂足为M.N,若点P从O点出发,沿OM做匀速运动,1分钟可到达M点,同时点Q从M点出发,沿MA做匀速运动,一分钟可到达A点.{1}求经过多少时间,线段PQ的长度为2.{2}写出线段PQ
{1}求经过多少时间,线段PQ的长度为2.
∵ vp=PM/1=2/1=2,
Vq=MA/=4/1=4,
经过时间t 后,P、Q点分别与M点的距离为
∴ PM=OM-OP=2-2×t
QM=vq×t=4×t
∵△PMQ是直角三角形,∴ PQ^2=PM^2+QM^2
2^2=(2-2t )^2+(4t)^2=4+4t^2-8t+16t^2
4=4+20t^2-8t
5t^2-2t=0
T(5t-2)=0
解得
t 1=0 t2=2/5
答:当开始(经过0分钟)时或经过2/5分钟后,PQ距离为 2.
2}写出线段PQ长度的平方y与时间t的关系式.
Y^2=(2-2t)^2+(4t)^2
=4+4t^2-8t+16t^2
=20t^2-8t+4
.{1}
P点速度为2米每秒。Q点速度为4米每秒。设时间为t,则(2-2t)²+(4t)²=2² (勾股定理)得t1=0秒,t2=(2/5)秒
{2}
PQ长度的平方y与时间t的关系式Y=(2-2t)²+(4t)²=20t²-8t+4
s
首先想说 初中数学题目单调 大题就是几何+函数
关键是答题的严密 和 分情况讨论
一般倒数2题 全部都需要分情况讨论
初中数学的重点是培养学生的 答题规范
高中数学的重点是培养学生动脑和发散思维
{1}求经过多少时间,线段PQ的长度为2.
∵ vp=PM/1=2/1=2,
Vq=MA/=4/1=4,
经过时间t 后,...
全部展开
首先想说 初中数学题目单调 大题就是几何+函数
关键是答题的严密 和 分情况讨论
一般倒数2题 全部都需要分情况讨论
初中数学的重点是培养学生的 答题规范
高中数学的重点是培养学生动脑和发散思维
{1}求经过多少时间,线段PQ的长度为2.
∵ vp=PM/1=2/1=2,
Vq=MA/=4/1=4,
经过时间t 后,P、Q点分别与M点的距离为
∴ PM=OM-OP=2-2×t
QM=vq×t=4×t
∵△PMQ是直角三角形,∴ PQ^2=PM^2+QM^2
2^2=(2-2t )^2+(4t)^2=4+4t^2-8t+16t^2
4=4+20t^2-8t
5t^2-2t=0
T(5t-2)=0
解得
t 1=0 t2=2/5
答:当开始(经过0分钟)时或经过2/5分钟后,PQ距离为 2。
2}写出线段PQ长度的平方y与时间t的关系式.
Y^2=(2-2t)^2+(4t)^2
=4+4t^2-8t+16t^2
=20t^2-8t+4
初中数学 关键是步骤的严密性
收起