n^(n+1/n)/(n+1/n)^n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:40:32
x)ˋ6ԇqy6IEXlpx1TNfM£I:%)*҈,O003ŮI>eHb!
9
tB*=b绖?igS$ف f~j
n^(n+1/n)/(n+1/n)^n
n^(n+1/n)/(n+1/n)^n
n^(n+1/n)/(n+1/n)^n
∑n^(n+1/n)/(n+1/n)^n
lim
= lim
= lim
= lim
=l im
故该级数发散.
n^(n+1/n)/(n+1/n)^n
2^n/n*(n+1)
(n+1)^n-(n-1)^n=?
化简:(n+1)!/n!-n!/(n-1)!
(n-1)*n!+(n-1)!*n
推导 n*n!=(n+1)!-n!
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
n
n
n
n
根号(n+1)+n
n.(n-1).
(n+2)!/(n+1)!
判断 当n>1时,n*n*n>3n.( )
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
9题 = 101 (n+1)!- = n*n!n(n+1)!- n*n!