在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是 答案我知道一共有两个分别是65/8或15/2 就是不知道过程 呵呵 要详细的过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 13:49:09
在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是                答案我知道一共有两个分别是65/8或15/2    就是不知道过程  呵呵 要详细的过程
xSN@~q㪕Z5R%/` IMK(4JB J B.k;Bgw(B*ֲvwv|@{% >>"-M 6)w-o04ã dc ksPЄgӋw_8j_ ?}צIc=N:gDNi¢6}%[޻%G#U^?T\-v֋n%%C%EJqӘEHHYJ('gsu+/:) %InHӥP1$R%窯(`tRIy17lOW 6!b`d`o&&;mIl f2zVF0y%H;N5~fM( )p{H6ppN}ր}z=$ŭNXG( 5@ArZ-/@TJbP䒀 l rێ-$|^(~vYfؒcsn %T.Mں QߣK/4I

在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是 答案我知道一共有两个分别是65/8或15/2 就是不知道过程 呵呵 要详细的过程
在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是
答案我知道一共有两个分别是65/8或15/2 就是不知道过程 呵呵 要详细的过程

在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是 答案我知道一共有两个分别是65/8或15/2 就是不知道过程 呵呵 要详细的过程
BC=BD+DC=√(AB^2-AD^2)+√(AC^2-AD^2)=√(15^2-12^2)+√(13^2-12^2)=9+5=14
因为:cosB=(AB^2+BC^2-AC^2)/(2*AB*BC)=(15^2+14^2-13^2)/(2*15*13)=3/5
sinB=√[1-(cosB)^2]=√[1-(3/5)^2]=4/5
由正弦定理:AC=2RsinB,所以R=AC/(2*sinB)=13/(2*4/5)=65/8

求△ABC外接圆的半径r
r就是所求的R
利用余弦定理先求各个角的角度:
cosA=(b^2+c^2-a^2)/(2bc)
cosB=(a^2+c^2-b^2)/(2ac)
cosC=(a^2+b^2-c^)/(2ab)
利用(sinA)^2=1-(cosA)^2求正弦值,
再利用正弦定理求外接圆半径:
a/sinA=b/...

全部展开

求△ABC外接圆的半径r
r就是所求的R
利用余弦定理先求各个角的角度:
cosA=(b^2+c^2-a^2)/(2bc)
cosB=(a^2+c^2-b^2)/(2ac)
cosC=(a^2+b^2-c^)/(2ab)
利用(sinA)^2=1-(cosA)^2求正弦值,
再利用正弦定理求外接圆半径:
a/sinA=b/sinB=c/sinC=2R
R即为外接圆半径

收起