设数列{An}满足下列关系:a1=2a,An=2a-[a^2/(An-1)];Bn=1/(An-a),求证:(1)An≠a;(2)Bn是等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:30:27
设数列{An}满足下列关系:a1=2a,An=2a-[a^2/(An-1)];Bn=1/(An-a),求证:(1)An≠a;(2)Bn是等差数列
xQAj1u&[0s !=@vY U(uQ[kF 3x6+'My/Kfw\JO[E3Jx<#)NTkPyllu@K:>IBv@p:snJg)dZtu]#z b6&|D4FYXJ0چWƴaX^Do =yL?">Zt`%GmWUav"Y]r`xLG8@"^!#g7?5ph0~c0ףße_-#X

设数列{An}满足下列关系:a1=2a,An=2a-[a^2/(An-1)];Bn=1/(An-a),求证:(1)An≠a;(2)Bn是等差数列
设数列{An}满足下列关系:a1=2a,An=2a-[a^2/(An-1)];Bn=1/(An-a),求证:(1)An≠a;(2)Bn是等差数列

设数列{An}满足下列关系:a1=2a,An=2a-[a^2/(An-1)];Bn=1/(An-a),求证:(1)An≠a;(2)Bn是等差数列
1、反证法
假设A[n]=a,那么代入等式a=2*a-(a^2/A[n-1])
得出 A[n-1]=A[n]=a
因此可以推出 A[1]=A[2]=...=A[n]=a与题中A[1]=2a矛盾
2、
B[n]-B[n-1]=(A[n-1]-A[n])/(A[n]*A[n-1]-a*(A[n]+A[n-1])+a^2)
由A[n]*A[n-1]=2*a*A[n-1]-a^2带入上式
B[n]-B[n-1]=(A[n-1]-A[n])/(a*(A[n-1]-A[n]))=1/a=常数
因此 B[n]是等差数列

设数列{An}满足下列关系:a1=2a,An=2a-[a^2/(An-1)];Bn=1/(An-a),求证:(1)An≠a;(2)Bn是等差数列 设数列{an}满足下列关系式a1=2a (a是不为0的常数)an =2a - a^2 / an-1 数列bn=1/(an-a)证明{bn}为等差数列 设数列{an}满足下列关系式a1=2a (a是不为0的常数)an =2a - a^2 / an-1 数列bn=1/(an-a),求{bn}都通项公式 设数列an满足a1=2,a(n+1)=3an+2^(n-1),求an2,设数列an满足a1=2,a(n+1)=3an+2n,求an 设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差数列? 设数列an满足a1=2,a(n+1)-an=3x2的2n-1次方,求数列an的通项公式 设数列AN满足A1等于1,3(A1+a2+~+AN)=(n+2)an,求通向公式 数列{an}中,满足下列条件,求通项an ...数列{an}中,满足下列条件,求通项an①a(n+1)=1/3an+4②a1=2*n,(n+1),1为a的下标 若数列{An},满足关系a1=2,an+1=3an+2,求数列的通项公式 根据下列条件,确定数列{An}的通项公式 1.,A1=1,An+1=(n+1)An,求An2已知数列{an}满足a(n+1)=an+n且a1=2,求an 关于数列、等差数列的题目设数列an满足an+1=an-2且a1=241)判断an是什么数列2)若an 设数列{an}满足a1=1, an=(4an-1 +2)/(2an-1 +7) ,则通项xn=? 已知数列{an}满足a1=1,an+1=2an+2.(1)设bn=2^n/an,求证:数列{bn}是等差数列.(2)求数列{an}的通项公式.a(n+1) 设数列{an}满足关系an=3/2(an-1)+5(n≥2),a1=-17/2.令bn=an+10,求数列{bn}的前n项和Sn 设数列{an}满足关系an=3/2(an-1)+5(n≥2),a1=-17/2.令bn=an+10,求数列{bn}的前n项和Sn 数列{an}满足a1=2,a(n+1)=2an+n+2,求an 数列[An]满足a1=2,a(n+1)=3an-2 求an 数列{an}满足a1=a,an+1=1+1/an.若3/2