微积分定积分问题,如题题5,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 07:56:04
微积分定积分问题,如题题5,
xRNA}MLݙ]mѷ0jffw誴kFcB4B1Fo$Dc>`vI`LvfsNηh&m7ߵB|]+t9v =Z궈b.uG0WU1Wբv)JZ%́p4A0'eB"0 J%%!A\!Q&ZBB5w5g{A8 ),웑:-P yr0'B8QN 3cf cl{Ř\a2 4FZy 9qCہ Bp Bs# '/<Ήp{gjH&r& +)5W'ޘZ]Εe]~Yw})Kսv7sֆ DpVCEh~OpNk 3N'y$oz0mlYWI#ţQ{nMYGdUUUet!;>Yub|Km4'ǛtoMYjwIާI]<t4?7,˓At44ڎb"9t_~}> \4

微积分定积分问题,如题题5,
微积分定积分问题,如题题5,

微积分定积分问题,如题题5,

 
希望采纳 有问题请追问 谢谢 

f(x)=1/(1+x^2)+x^3∫[0,1] f(x)dx
对上式两边从0到1积分得
∫[0,1] f(x)dx=∫[0,1] 1/(1+x^2)dx + ∫[0,1] {x^3∫[0,1] f(x)dx}dx
=arctan1-arctan0 + ∫[0,1] f(x)dx * ∫[0,1] x^3dx (因为∫[0,1] f(...

全部展开

f(x)=1/(1+x^2)+x^3∫[0,1] f(x)dx
对上式两边从0到1积分得
∫[0,1] f(x)dx=∫[0,1] 1/(1+x^2)dx + ∫[0,1] {x^3∫[0,1] f(x)dx}dx
=arctan1-arctan0 + ∫[0,1] f(x)dx * ∫[0,1] x^3dx (因为∫[0,1] f(x)dx是个常数)
=π/4 + (1/4) * ∫[0,1] f(x)dx
(3/4) ∫[0,1] f(x)dx =π/4
∫[0,1] f(x)dx=π/3

收起