已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题; ②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题; ④命题“¬p∨¬q”是假命
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:01:49
xAN@ޚ1)$*'p@Zu1(8ĄؠhED(at+hGD@`Ƥ F]J
ki@"pfOHQxu
]C
ųV@C'پ8owsFY ~|{lˮQ
qh|EQ@ XmOb~>'{?Z&.CʂKeV]
kd
已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题; ②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题; ④命题“¬p∨¬q”是假命
已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是( )
A.②③\x09B.①②④\x09C.①③④\x09D.①②③④
我想知道否p否q为什么错了
已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题; ②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题; ④命题“¬p∨¬q”是假命
∵当x=π /4 时,tanx=1,∴命题p为真命题.命题¬p为假命题.
∵x2-3x+2<0的解为1<x<2,∴命题q为真命题.命题¬q为假命题.
∴命题“p∧q”是真命题,命题“p∧¬q”是假命题,命题“¬p∨q”是真命题,命题“¬p∨¬q”是假命题.
故选D
已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题; ②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题; ④命题“¬p∨¬q”是假命
已知命题p:∃x ∈R,使tanx=1,命题q:x2-3x+2
已知命题p:“对所有X∈R,存在m∈R,使4^x-2^(x+1)+m=0”,若命题┌P是假命题,不好意思,已知命题p:“对所有X∈R,存在m∈R,使4^x+2^(x+1)+m=0”,若命题P是假命题,求m范围
已知向量a=(2,1+sinx),b=(1,cosx),命题p;存在x∈R 使a⊥b,试证明命题p是假命题
已知命题p:存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
已知命题p:存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
已知命题p:存在X∈R,SinX
已知命题p:对任意x∈R,存在m∈R,使4∧x+2∧xm+1=o .若命题 非p是假命题,求实数m的取值范围.
已知命题 p:方程 x2+x-1=0 的两实根的符号相反;命题 q:存在 x ∈ R,使 x2-mx-m
已知命题p:对任意x∈R,存在m∈R,使4^x+2^x+1+m=0,若非p是假命题,则实数m的范围是?
已知命题p:存在X∈R,使x(6-x)≥-16成立;命题q:存在x∈R,使x^2+2x+1-m^2≤0(m<0)成立.若p是q成立的已知命题p:存在X∈R,使x(6-x)≥-16成立;命题q:存在x∈R,使x^2+2x+1-m^2≤0(m<0)成立。若p是q成
已知命题p:任意x∈[1,2],x²-a≥0;命题q:存在x∈R,使x²+2ax+2-a=0
已知命题p:“对(全称量词)x属于R,(存在量词)m属于R,使4^x-2^(x+1)+m=0”,若命题非p是假命题,求实数m的取值范围
12.已知命题p:对任意x∈R,存在m∈R,4*x+2*xm+1=0,若命题非P是假命题,则实数的取值范围是————问题补
已知a>0,命题p:任意x∈(0,+∞),有不等式x+a/x≥2恒成立,命题q:x∈R,函数f(x)=(a-1)^y是实数R上的增函数,问是否存在正数a,使p∧q为真命题,若存在求出a的范围
命题p:存在x∈r,使x^2-2x+m=0;命题Q:任意X∈r,X^2+mx+1>0若“P且Q”为真命题,求实数m的取值范围
已知命题P:存在x∈R,mx^2+1≤0;命题q:任意x∈R,x^2mx+1>0,若命题P并q为假命题,则实数m的取值范围是?
数学高二命题的否定已知命题P:(所有)X∈[1,2],x²-a≥0,命题Q:(存在)X∈R,X²+2aX+2-a=0已知命题P:(所有)X∈[1,2],x²-a≥0,命题Q:(存在)X∈R,X²+2aX+2-a=0,若命题“P且Q”是真