若不等式不等式(x²-8x+20)/(mx²+2(m+1)x+9m+4)>0对任意实数x恒成立,求m的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:45:33
xN@_ib/i"vEjn,*oh,(#hj۪oChϴxQݲ9%_ nONLVg%i--"3+3HޓxՄn8Kzw+Zp
f
/*u/csHPZ@̤2RXˆ^pGzpg$OFửZg?[c8ES")RʄFFVw.IBTQ ^Ѩ9z f;~/`p$Po^p/lB"/ST4ʈD`}~%R"JR/(YCoΠn$LP}+$v® 6B=I
若不等式不等式(x²-8x+20)/(mx²+2(m+1)x+9m+4)>0对任意实数x恒成立,求m的取值范围
若不等式不等式(x²-8x+20)/(mx²+2(m+1)x+9m+4)>0对任意实数x恒成立,求m的取值范围
若不等式不等式(x²-8x+20)/(mx²+2(m+1)x+9m+4)>0对任意实数x恒成立,求m的取值范围
分子=x²-8x+20=(x-4)²+4>=4
所以,当分母mx²+2(m+1)x+9m+4>0时,原不等式成立.
令f(x)=mx²+2(m+1)x+9m+4
1.当m=0时,f(x) = 2x+4不恒大于0,所以m=0不是解.
2.当m>0时,f(x)的图像开口向上,要想f(x) >0 对任意实数x恒成立,必有Δ0
m >1/4 或 m< -1/2 (因为m>0,所以m
因为分子恒大于0,只需分母大于0即可。对m讨论,当m=0时,满足题意;当m>0时,△<0,解出即可,自己算吧,望采纳