设a>b>0,求2a²+1/ab+1/a(a-b)最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 06:51:51
x){n_=@&D5eCskmC$lN
O$铬GΆ<^hdglj+T9P{"=
[[[;.D\Ɏ)*Otgs<|m=O?`y34@Ԏ6@YCMvH$>\jmdkhg'[dk"M}ayڻQ,#}
O@ 1 XK
设a>b>0,求2a²+1/ab+1/a(a-b)最小值
设a>b>0,求2a²+1/ab+1/a(a-b)最小值
设a>b>0,求2a²+1/ab+1/a(a-b)最小值
因a>b>0.故a²>ab>0.
===>a²-ab>0,且ab>0.
由基本不等式可知;
a²+(1/ab)+[1/(a²-ab)]
={(a²-ab)+[1/(a²-ab)]}+[(ab)+1/(ab)]≥2+2=4.
等号仅当a²-ab=1,ab=1时取得;
即当a=√2,b=1/√2时取得.故原式min=4.