求下列微分方程的解y'+ycosx=(1/2)sin2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:27:23
求下列微分方程的解y'+ycosx=(1/2)sin2x
xRMKA+uG6=xT!DؽDXɦ!:([!wE"~ҡ<cr5pzVXg'5޿_NRsή6U2zV-^䳶qzU"Cuz!gk薽'(n*Gv%iIMe'" g|3ј̣}l" >,lFSIյ- 0 ,Pp[ۦm"zouWȊGQ-qXkRAm_IX*vSfdUmBF3Tn4oW/<oz-؊O?vЋ|N_.

求下列微分方程的解y'+ycosx=(1/2)sin2x
求下列微分方程的解
y'+ycosx=(1/2)sin2x

求下列微分方程的解y'+ycosx=(1/2)sin2x
dy/dx+ycosx=(1/2)sin2x,令dy/dx+ycosx=0得dy/dx=-ycosx,dy/y=-cosxdx 两边积分得 lny=-sinx+C1,y=C2*e^(-sinx),用常系数变异法,y=u(x)*e^(-sinx)代入原式化简得u'(x)*e^(-sinx)=1/2*sin2x,u'(x)=1/2*sin2x*e^sinx,u(x)=∫1/2*sin2x*e^sinxdx=∫sinxcosx*e^sinxdx=∫sinx*(e^sinx)dsinx=∫sinxd(e^sinx)=sinx*e^sinx-∫(e^sinx)dsinx=sinx*e^sinx-e^sinx+C,把u(x)代入y=u(x)*e^(-sinx)得y=(sinx*e^sinx-e^sinx+C)*e^(-sinx)=sinx-1+C*e^(-sinx) 终于完了,想起来容易打起来难啊~