已知f(x)=x^ 2+c,且f[f(x)]=f(x^ 2+1) (1)设g(x)=f[f(x)],求g(x)的解析式 (2)设φ(x)=g(x)-λf(x),是否存在实数λ,使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:07:03
已知f(x)=x^ 2+c,且f[f(x)]=f(x^ 2+1) (1)设g(x)=f[f(x)],求g(x)的解析式 (2)设φ(x)=g(x)-λf(x),是否存在实数λ,使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数?
xN@_eva*vIA$J;Ct%BX@$hQA7rQ` &>L< !-9m4cou+-a&JQwXKQHdԅS;D@y?gy?qʜ 4Yaej#Ny˪m`WczojSw!XPK VsgxXa1^94Fn%? ™XM$Uf7RISŐp{udy}U lr H- ݚ?91afņj')C5֩UV 4gZNUBE^Ȭu3D @IGBW48ʦ!ٟq tEz,Ve/?"~;Qϩƹi(ӫ@ʷ6HvMmC.?@hSqf0WMϪ

已知f(x)=x^ 2+c,且f[f(x)]=f(x^ 2+1) (1)设g(x)=f[f(x)],求g(x)的解析式 (2)设φ(x)=g(x)-λf(x),是否存在实数λ,使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数?
已知f(x)=x^ 2+c,且f[f(x)]=f(x^ 2+1) (1)设g(x)=f[f(x)],求g(x)的解析式 (2)设φ(x)=g(x)-λf(x),是否存在实数λ,使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数?

已知f(x)=x^ 2+c,且f[f(x)]=f(x^ 2+1) (1)设g(x)=f[f(x)],求g(x)的解析式 (2)设φ(x)=g(x)-λf(x),是否存在实数λ,使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数?
已知f(x)=x^ 2+c,且f[f(x)]=f(x^ 2+1) (1)设g(x)=f[f(x)],求g(x)的解析式 (2)设φ(x)=g(x)-λf(x),是否存在实数λ,使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数?(1)因为 f[f(x)]=f(x^ 2+1) 所以(x^2+c)^2+c=(x^2+1)^2+c 展开整理得 (2c)x^2+c^2+c=2x^2+1+c 比较x的系数得 2c=2 c=1 所以g(x)=(x^2+1)^2+1=x^4+2x^2+2 (2)φ(x)=x^4+2x^2+2-λ(x^2+1) =x^4+(2-λ)x^2+2-λ φ'(x)=4x^3+2(2-λ)x =x(4x^2+4-2λ) 所以x=0 x=±√[(2λ-4)/4]是极值点 要使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数,说明x=-1是极小点,令-√[(2λ-4)/4 ]=-1 得λ=4 所以存在λ=4 使φ(x)在(-∞ ,-1)上是减函数,并且在(-1,0)上是增函数.