(x^2+y^2-2ax)^2=b^2(x^2+y^2) 求dy/dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:16:21
(x^2+y^2-2ax)^2=b^2(x^2+y^2) 求dy/dx
xQn0S,%ʌ"P1 PNA,v/LQG&޽{yd @$sTernd:O ?_۩o?7kt ]ƴ,Q4 Ramrޭ~^тeeщVdLEX NH2=D ;V%7pwAjȷGӿu~,ҜAWgNMG!sP$ᵰE"UOu1~

(x^2+y^2-2ax)^2=b^2(x^2+y^2) 求dy/dx
(x^2+y^2-2ax)^2=b^2(x^2+y^2) 求dy/dx

(x^2+y^2-2ax)^2=b^2(x^2+y^2) 求dy/dx
(x^2+y^2-2ax)^2=b^2(x^2+y^2)
化简得:x^4+2*x^2*y^2+y^2-4*a*x^3-4*a*x*y^2+4*a^2*x^2
=b^2*x^2+b^2*y^2
两边同时取微分,得
4*x^3*dx+2*(x^2*2y*dy+y^2*2x*dx)+2*y*dy-12*a*x^2*dx4*a*(x*2y*dy+y^2*dx)+4*a^2*2*x*dx=2*x*b^2*dx+2*b^2*y*dy
合并同类项相比,得
dy/dx=(4*x^2+4*x*y^2-12*a*x^2-4*a*y^2+8*a^2*x-2*b^2*x)/(2*b^2*y-4*x^2*y-2*y+8*a*x*y)