已知函数f(x)=x²/(x-2)(x∈R,且x≠2).(1)求f(x)的单调区间;(2)若函数g(x)=x²-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 18:59:57
已知函数f(x)=x²/(x-2)(x∈R,且x≠2).(1)求f(x)的单调区间;(2)若函数g(x)=x²-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.
xSn@~J-QKC8LV⣓ ŤlEi $Nb9 /]Oz?m3ΕpuƻYuCQ?Y6:{թ~vuE[z'@nq| rN7liZ>0G ZGY Z5 #ƒf+~e|:]*/T6;KO8eZ NM0f;.΃A/6sC\{ \k))qrᰙ C&iLHǢtD KH(RbX"prSߊH>357Zäpx%b\ܱ8`;աOPBf^'!()E׬P-^? 3uh܇CJO2ziFFZu3Wi[!,2a3e毉0LGJ޻? &1_޹

已知函数f(x)=x²/(x-2)(x∈R,且x≠2).(1)求f(x)的单调区间;(2)若函数g(x)=x²-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.
已知函数f(x)=x²/(x-2)(x∈R,且x≠2).(1)求f(x)的单调区间;
(2)若函数g(x)=x²-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.

已知函数f(x)=x²/(x-2)(x∈R,且x≠2).(1)求f(x)的单调区间;(2)若函数g(x)=x²-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.
(1)对f(x)求导
f(x)'=(x²-4x)/(x-2)²
作图(步骤省略)
f(x)的单调增区间(-∞,0】和【4,+∞)
f(x)的单调递减区间(0,2)和(2,4)
(2)
函数f(x)在x∈[0,1]的值域[-1/2,0]
g(x)'=2x-2a
g(x)单调增区间(a,+∞)
g(x)单调减区间(-∞,a】
g(x)的最小值g(a)=-a²
讨论
1、当a≥1时,g(x)在[0,1]上单调递减
g(0)=0 g(1)=-1/2 ,a=3/4 这与a≥1矛盾,舍去.
2、当a≤0时,g(x)在[0,1]上单调递增
g(0)=-1/2 不符合题意.
3、当0<a<1时,g(x)的最小值g(a)=-a²=-1/2
a=√2/2
即a=√2/2满足题意.