若A(-2,0)B(2,-1),直线ax+by=1(ab≠0)与线段AB有一个公共点,则a^2+b^2的最小值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:18:06
若A(-2,0)B(2,-1),直线ax+by=1(ab≠0)与线段AB有一个公共点,则a^2+b^2的最小值为
若A(-2,0)B(2,-1),直线ax+by=1(ab≠0)与线段AB有一个公共点,则a^2+b^2的最小值为
若A(-2,0)B(2,-1),直线ax+by=1(ab≠0)与线段AB有一个公共点,则a^2+b^2的最小值为
1/8
画个图,根据图看我的解答.
注意到直线ax+by=1(ab≠0)形式为截距式,容易由a^2+b^2联想到距离或者三角形面积,于是容易发现原点到直线的距离d=1/√a²+b²,因此只要求出dmax,就有a^2+b^2的最小值.
随意画一条符合条件的直线ax+by=1(ab≠0),若它与线段AB的交点不在端点A或B,则必然有平行于你画直线且经过端点A或者B的直线,它到原点的距离大于你所画直线到原点的距离,
由此得到:若要d取到最大值,ax+by=1(ab≠0)必须经过端点A或者B.
接下来的问题就是考虑到底是经过A还是B,或者两者都可以.
先看A,由于它在x轴上,容易发现过A的直线距离原点距离最大为2,而且将不满足ab≠0这个条件
接着是B,设过B直线斜率为k(k≠0且k存在),
则上述直线可以写作:y+1=k(x-2),d=|1+2k|/√1+k² ≤ |1+2k|/√2k=|1/√2k+√2k|≤2√2
当且仅当k=1时取到最大值,发现比2要大(说明所求直线应该过B而不是A)
于是,(a^2+b^2)min=1/8
设点A(1,0),B(2,1),如果直线ax+by=1与线段AB有一个公共点,那么a2+b2( ).最小值为
∵直线ax+by=1与线段AB有一个公共点,
∴点A(1,0),B(2,1)在直线ax+by=1的两侧,
∴(a-1)(2a+b-1)≤0,
即a-1≤02a+b-1≥0或a-1≥02a+b-1≤0;
画出它们表示的平面区域,如图所示...
全部展开
设点A(1,0),B(2,1),如果直线ax+by=1与线段AB有一个公共点,那么a2+b2( ).最小值为
∵直线ax+by=1与线段AB有一个公共点,
∴点A(1,0),B(2,1)在直线ax+by=1的两侧,
∴(a-1)(2a+b-1)≤0,
即a-1≤02a+b-1≥0或a-1≥02a+b-1≤0;
画出它们表示的平面区域,如图所示.
a2+b2表示原点到区域内的点的距离的平方,
由图可知,当原点O到直线2x+y-1=0的距离为原点到区域内的点的距离的最小值,
∵d=|-1|/√(4+1),
那么a2+b2的最小值为:d2=1/5.
.
或查看看http://www.jyeoo.com/math2/ques/detail/374c272c-13ae-45a4-9af6-a7c51b4c4fdb
收起