设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.(1) 求证:数列{ Bn+2}是等比数列(要指出首项与公比)(2) 求数列{ An}的通项公式.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:37:25
设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.(1) 求证:数列{ Bn+2}是等比数列(要指出首项与公比)(2) 求数列{ An}的通项公式.
xRKJ@,N R2 `(B|T*Bl[a$&p^m7.rd{l4 Vĵҫvi=jHI`PqP+!`N_蠪H& [itP#MgӦ2`nh};=. ձ:-J}|_lT)  a+" (O[dXJGR!*|x r 79Qv4 ~Ek2M'>nc־gM܅mKE Űrp##= %^l01.m@ʌlVͰ|\@kAP*z6ŏ셈

设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.(1) 求证:数列{ Bn+2}是等比数列(要指出首项与公比)(2) 求数列{ An}的通项公式.
设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.
(1) 求证:数列{ Bn+2}是等比数列(要指出首项与公比)
(2) 求数列{ An}的通项公式.

设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.(1) 求证:数列{ Bn+2}是等比数列(要指出首项与公比)(2) 求数列{ An}的通项公式.
(1) B(n+1)=2B(n)+2
=>B(n+1)+2 = 2( B(n)+2 )
所以:B(n)+2 是等比数列
公差为2,首项 B1+2 = 4
(2) B(n) = A(n+1) - A(n)
B(n-1) = A(n) - A(n-1)
.
B(1) = A(2) - A(1)
上面n个式子相加可得
B(1)+B(2)+...+B(n) = A(n+1)-A(1)
=>( B(1)+2 )+( B(2)+2 )+ ...+( B(n)+2 )
= A(n+1) - A(1) + 2*n
=>4 + 8 + 16 + ...+ 4*2^(n-1)
= A(n+1) - 2 + 2*n
=> A(n+1) = 2^(n+2) - 2n - 2
=> A(n) = 2^(n+1) - 2n

设数列{an},{bn}满足;a1=4 a2=5/2,an+1=an+bn/2,bn+1=2anbn/an+bn 用数列an表示an+1;并证明;任意n属于设数列{an},{bn}满足;a1=4 a2=5/2,an+1=an+bn/2,bn+1=2anbn/an+bn (1)用数列an表示an+1;并证明;任意n属于N*都 数列 (30 20:12:4)设两个数列{An},{Bn}满足Bn=(a1+2*a2+3*a3+…+n*an)/(1+2+3+…+n),若{Bn}为等差数列,求证:{An}也为等差数列 设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列···设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列,Sn为数列{bn}的前n项和,且Sn=2n-bn+10,(1)分别求{an}{bn}的通项公式(2 设数列An,Bn满足a1=b1=6,a2=b2=4,a3=b3=3,且数列A(n+1)-An(n属于正整数)是等差数列.设数列An,Bn满足a1=b1=6,a2=b2=4,a3=b3=3,且数列A(n+1)-An(n属于正整数)是等差数列,sn为数列{BN}的前几项和,且sn=2n-bn+101)求数 已知数列{an}满足a1=3,(an+1)-3an=3^n(n,n∈N*),数列{bn}满足bn=3^(-n)an求证:数列{bn}是等差数列设sn=(a1)/3+(a2)/4+(a3)/5+.(an)/(n+2),求满足1、128<sn/s2n<1/4的所有正整数n的值 设数列an为等比数列,数列bn满足bn=na1+(n-1)a2+...+2an-1+an已知b1=1,b2=4第一问为什么可以“由已知b1=a1” 设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{a(n+1)-an}是等差数列,{bn-2}是等比数列(2)设{nbn}的前n项和为Sn,求Sn的表达式(3)数列{C 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 设数列{an}的前n项和为Sn,且Sn=4an-3(n=1,2……) (1)求a1,a2 (2)求通项公式an (3)若数列{bn}满足设数列{an}的前n项和为Sn,且Sn=4an-3(n=1,2……)(1)求a1,a2(2)求通项公式an(3)若是数列{bn}满足bn+1=an=bn 等差等比数列应用设数列{An}和{Bn}满足A1=B1=6,A2=B2=4,A3=B3=3,且数列{A(n+1)-An}是等差数列,数列{Bn-2}是等比数列(1)设,求数列{Cn}的通项公式(2)求数列{An}和{Bn}的通项公式 设数列{an}满足a1+2a2+3a3+……+nan=2^n(n∈N*) 求数列{an}的通项公式 设bn=n^2*an,求数列bn的前n项和 设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=n/an求数列bn的前n项 已知数列{an}满足a1=4,an+1=an+p.3^n+1(n属于N+,P为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{an}的通项公式.(2)设数列{bn}满足bn=n^2/(an-n),证明:bn 已知数列{an}满足a1=3,an+1=an+p×3^n(n∈N*,p为常数)a1,a2+6,a3成等差数列1.求p的值及数列{an}的通项公式2.设数列{bn}满足bn=n^2/a^2,求证 bn≤4/9 设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn的前n项和Sn设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn的前n项和Sn 设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.