已知:梯形ABCD中,AD//BC,M、N分别是BD、AC中点.求证:MN//BC,2MN=BC—AD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:26:12
已知:梯形ABCD中,AD//BC,M、N分别是BD、AC中点.求证:MN//BC,2MN=BC—AD
xQJ@~ݙ='P E$-ҜD ]b~ꩯd@ ^{ٙfof=L_ j`4}78q[*nc-Rȁi{v|7U:JckbBu~e٬[dY$~*MiM}|DR#GvQ6? lB]`4RGaʳ ݮ(|vbքۥ'vٱY[Nz>Q'eQFЗF. 9^ rrIǍA ##d8,O\M.V+ܭ$HUZJӮR9)G_N6Zy:ZݧB/ddfmbLV!1%TwGJhn

已知:梯形ABCD中,AD//BC,M、N分别是BD、AC中点.求证:MN//BC,2MN=BC—AD
已知:梯形ABCD中,AD//BC,M、N分别是BD、AC中点.求证:MN//BC,2MN=BC—AD

已知:梯形ABCD中,AD//BC,M、N分别是BD、AC中点.求证:MN//BC,2MN=BC—AD
连接DN并延长与BC交与k
△ADN≌△NKC
AD=CK,dN=nK
△BDK中
BM=DM,DN=NK
MN‖BK
MN=1/2BK=1/2(BC-AD)

证明:连DN并延长交BC于E,
因为AD∥BC
所以∠DAC=∠ECA,∠ADE=∠CED,
又N是AC的中点
所以AN=CN
所以△ADN≌△CEN(AAS)
所以DN=EN,AD=EC
因为M是BD的中点
所以MN是△DBE的中位线
所以MN∥BC,MN=BE/2,
因为AD=EC
所以MN=BE/2=(BC-EC)/2=(BC-AD)/2