如题,求由曲线y=x^3及y=x^(1/2)所围图形的面积,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 18:16:30
如题,求由曲线y=x^3及y=x^(1/2)所围图形的面积,
x){:66=Mw3~5 4u6<}O.z>EϗױI*ҧD~ x1Y@m`1 @=Ov-y޴S@@SAPPgړຟ~Ա:@0V!j.ؔ m1P"no Q J@8F6yv װ

如题,求由曲线y=x^3及y=x^(1/2)所围图形的面积,
如题,求由曲线y=x^3及y=x^(1/2)所围图形的面积,

如题,求由曲线y=x^3及y=x^(1/2)所围图形的面积,
变成定积分
y=x^3及y=x^(1/2)的交点(0,0) (1,1)
化为定积分得
∫[0,1] [x^(1/2)-x^3]dx
=[2/3x^(3/2)-x^4/4][0,1]
=2/3-1/4
=5/12