设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.1、作差法(x²+y²)(x-y)-(x²-y²)(x+y)=x³-x²y+xy²-y³-(x³+x²y-xy²-y³)=-2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:52:15
设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.1、作差法(x²+y²)(x-y)-(x²-y²)(x+y)=x³-x²y+xy²-y³-(x³+x²y-xy²-y³)=-2x
xJ@_e@dLJXdބ֖ZB+b2f*dfۢԕ>sy=썌oЩcN#ld#ߎEH@;p3 K#<~e+i6K}/\nr NAGR.#i *qP=<}eaT LYP%A3Eb !4UBZ'CE K9E0sJKTL RUs6g4Nĥsejm]@]fW-bKU)Vr1 F"%yBFVE_s̚@_C

设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.1、作差法(x²+y²)(x-y)-(x²-y²)(x+y)=x³-x²y+xy²-y³-(x³+x²y-xy²-y³)=-2x
设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.
1、作差法
(x²+y²)(x-y)-(x²-y²)(x+y)
=x³-x²y+xy²-y³-(x³+x²y-xy²-y³)
=-2x²y+2xy²
=-2xy(x-y)
因为
x(x²-y²)(x+y)
2、比值法
1,因为 [(x^2+y^2)(x-y)]/[(x^2-y^2)(x+y)]
=(x^2+y^2)/(x+y)^2,
而 (x+y)^2=x^2+y^2+2xy,
因为 x<y<0,所以 2xy>0,
所以 (x+y)^2>x^2+y^2,
所以 (x^2+y^2)/(x+y)^2

设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.1、作差法(x²+y²)(x-y)-(x²-y²)(x+y)=x³-x²y+xy²-y³-(x³+x²y-xy²-y³)=-2x
作差法是对的
比值法的最后做出来
[(x^2+y^2)(x-y)]/[(x^2-y^2)(x+y)]

(x+y)^2>x^2+y^2 没有问题,
x x-y<0
(x-y)(x+y)^2<(x-y)(x^2+y^2) ---两边同时乘以负数,不等号方向改变!
所以:(x²+y²)(x-y)>(x²-y²)(x+y)