高数 不定积分14
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 19:37:29
xRjA}($&ofYɚ]1xUֈ^+Q($}&镯 \3wf>ΜstiiO^
t9HnV\Yk7˥kr+V:y'NͺlۭZck!1FY=?G)X Ln< f0$ARPpp,0c8ݤ Hd_Mh%.ܛq.LH=?Y2ЯfHgBHu亝ǵFT
¬eLPLHqi]"8)qvŜ#XyjI0iYKrO.XyV8&3WLr\Bb{&w?>oGCdp4}
高数 不定积分14
高数 不定积分14
高数 不定积分14
设t=[(x-a)/(b-x)]^(1/2),则x=(a+bt^2)/(1+t^2),dx=2(b-a)tdt/(1+t^2)^(2),所以原积分=∫[(x-a)/(b-x)]^(1/2)dx/(x-a)=2∫dt/(1+t^2)=2arctant+C=2arctan[(x-a)/(b-x)]^(1/2)+C
具体过程的话,配方就可以算了。