A=48×(1/3²-4+1/4²-4+...+1/100²-4),则与A最接近的正整数是?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:30:26
A=48×(1/3²-4+1/4²-4+...+1/100²-4),则与A最接近的正整数是?
A=48×(1/3²-4+1/4²-4+...+1/100²-4),则与A最接近的正整数是?
A=48×(1/3²-4+1/4²-4+...+1/100²-4),则与A最接近的正整数是?
A=48×(1/(3²-4)+1/(4²-4)+...+1/(100²-4))
=48(1/(5*1)+1/(6*2)+1/(7*3)+...+1/(102*98))
=48*(1/4)*(1-1/5+1/2-1/6+1/3-1/7+……+1/98-1/102)
=12*(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=12+6+4+3-12/99-12/100-12/101-12/102
=25-(12/99+12/100+12/101+12/102)
因为48/102
A=48[1/(1*5)+1/(2*6)+1/(3*7)+1/(4*8)+1/(5*9)+...+1/(94*98)+1/(95*99)+1/(96*100)+1/(97*101)+1/(98*102)]
因为1/(1*5)=1/4(1/1-1/5) 1/(2*6)=1/4(1/2-1/6)
所以上式可转化为
A=48*1/4*(1-1/5+1/2-1/6+1/3-1/7+...
全部展开
A=48[1/(1*5)+1/(2*6)+1/(3*7)+1/(4*8)+1/(5*9)+...+1/(94*98)+1/(95*99)+1/(96*100)+1/(97*101)+1/(98*102)]
因为1/(1*5)=1/4(1/1-1/5) 1/(2*6)=1/4(1/2-1/6)
所以上式可转化为
A=48*1/4*(1-1/5+1/2-1/6+1/3-1/7+1/4-1/8+1/5-1/9+...+1/94-1/98+1/95-1/99+1/96-1/100+1/97-1/101+1/98-1/102)
=12(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=25-12(1/99+1/100+1/101+1/102)
约=24.52
所以A最接近正整数25
收起