大学数学数项级数问题,求判断它是否为收敛级数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:07:58
大学数学数项级数问题,求判断它是否为收敛级数.
xn0_%*q&, E";MuR4 ԁ(lCfĶ ޥ&Yֱ9V4A[4}{|v? >tf缾' H4?&uE L3G E)8SyNjtQPVb}";2x.C83 qXd6֠5D>vL.5*~6 =O Šu":$ё0xbQ~B]d: RCj9P]d DsM S|"~(㻟ZJa9z[vlɖ&?9[3JBlɃET`+wƊ_Ԣ?םi X?^n7gۭn+7Y@6/V

大学数学数项级数问题,求判断它是否为收敛级数.
大学数学数项级数问题,求判断它是否为收敛级数.
 

大学数学数项级数问题,求判断它是否为收敛级数.
注意到极限
   lim(n→∞)n*ln(1+1/n²) = lim(n→∞)n*(1/n²)= 0,
所以
   lim(n→∞){[n^(n+1/n)]/[(n+1/n)^n]}
  = lim(n→∞){[n^(1/n)]/[(1+1/n²)^n]}
  = lim(n→∞){[n^(1/n)]/{e^[n*ln(1+1/n²)]}}
  = 1≠ 0,
根据级数收敛的必要条件可知该级数发散.