数列{an}中,满足下列条件,求通项an ...数列{an}中,满足下列条件,求通项an①a(n+1)=1/3an+4②a1=2*n,(n+1),1为a的下标

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 06:39:47
数列{an}中,满足下列条件,求通项an ...数列{an}中,满足下列条件,求通项an①a(n+1)=1/3an+4②a1=2*n,(n+1),1为a的下标
xQJ0~Y҆$c۾H ! xA^ :{R{ DzzI~/a׷O)UM~yYr;[nw.A$ "qG"$C4HU|<^]gvWEM3zh*i̬d:t؈AA LZfxwB{Rx{cO2.b29[H,K 8 hmЊ1T%Ar9{d2LS,(=6-\BY(St\thO[e

数列{an}中,满足下列条件,求通项an ...数列{an}中,满足下列条件,求通项an①a(n+1)=1/3an+4②a1=2*n,(n+1),1为a的下标
数列{an}中,满足下列条件,求通项an ...
数列{an}中,满足下列条件,求通项an
①a(n+1)=1/3an+4
②a1=2
*n,(n+1),1为a的下标

数列{an}中,满足下列条件,求通项an ...数列{an}中,满足下列条件,求通项an①a(n+1)=1/3an+4②a1=2*n,(n+1),1为a的下标
∵a(n+1)=1/3an+4,a1=2,
∴an=1/3a(n-1)+4
=1/3²a(n-2)+4/3+4
.
=a1/3^(n-1)+4/3^(n-2)+4/3^(n-3)+.+4/3+4
=2/3^(n-1)+4(1/3^(n-2)+1/3^(n-3)+.+1/3+1)
=2/3^(n-1)+4[1-1/3^(n-1)]/(2/3)
=2/3^(n-1)+6[1-1/3^(n-1)]
=6-4/3^(n-1).

a(n+1)=1/3an+4
a(n)=1/3a(n-1)+4
=1/3[1/3a(n-2)+4]+4
=(1/3^2)a(n-2)+4(1+3)=(1/3^2)[1/3a(n-3)+4]+4(1+3)
=(1/3^3)a(n-3)+4(1+3+3^2)
=………………………………
=[1/3^(n-1)]a(1)+4[1+3+3^2+…+3^(n-2)]
=1/3^(n-1)+4{[3^(n-1))-1]/(3-1)]
=1/3^(n-1)+2*3^(n-1)-2