数列an=n/2^(n+1)求和再求极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:24:16
数列an=n/2^(n+1)求和再求极限
x){6uӎyyFqtilcI=Ozg_Μ`TOb;γ5*36@DHj?jXDy@

数列an=n/2^(n+1)求和再求极限
数列an=n/2^(n+1)求和再求极限

数列an=n/2^(n+1)求和再求极限
Sn=1/2^2+2/2^3+3/2^4+4/2^5+……+(n-1)/2^n+n/2^(n+1)
2Sn=1/2+2/2^2+3/2^3+4/2^4+……+(n-1)/2^(n-1)+n/2^n
两式相减:
Sn=1/2+1/2^2+1/2^3+1/2^4+1/2^5+……+1/2^n-n/2^(n+1)
=(1/2)[(1/2)^n-1]/(1/2-1)-n/2^(n+1)
=1-(1/2)^n-n(1/2)^(n+1)
=1-2(1/2)^(n+1)-n(1/2)^(n+1)
=1-(2+n)(1/2)^(n+1)
limSn=lim[1-(2+n)(1/2)^(n+1)]
=1-lim[(2+n)(1/2)^(n+1)]
=1