在△ABC中A,B,C满足cosB+sinCcosA=0 (1)用tanA表示tanC (2)求角B范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:23:55
在△ABC中A,B,C满足cosB+sinCcosA=0 (1)用tanA表示tanC (2)求角B范围.
xSN@( 3$m]#4F#v"c̴>Y4s眹w:ϋVrs\n5<9jGrT%ò3FR(9Q;/mNkޢem?OP*:( wS Fd<]g&\.E)U+ #`Hmut2JiH M[z;|=9[UKbmR{9tL6|Xm$٪8v/̨ HVi[GvkN0fw:G31I%2/.eYִvE-uqA|1< ?a5wX#(+5BSsrJE!EYR_&s)s~qڅF?zxļZ~K

在△ABC中A,B,C满足cosB+sinCcosA=0 (1)用tanA表示tanC (2)求角B范围.
在△ABC中A,B,C满足cosB+sinCcosA=0 (1)用tanA表示tanC (2)求角B范围.

在△ABC中A,B,C满足cosB+sinCcosA=0 (1)用tanA表示tanC (2)求角B范围.
(1)将cosB换作cos(180-(A+C))=-cos(A+C)代入展开后同除cosAcosC得tanC=1/(1+tanA) (2)tanB=-tan(A+C)=(tanA+tanC)/(tanAtanC-1).然后将上问所得代入可得tanB=-(tanA)2-tanA-1由二次函数最值得tanB

cosB+sinCcosA=0
cosB=-cos(A+C)=sinAsinC-cosAcosC
sinAsinC-cosAcosC+sinCcosA=0
cosAcosC(tanA-1+tanC)=0
因为cosAcosC不等于0,所以tanA+tanC-1=0
tanC=1-tanA
tan(A+C)=(tanA+tanC)/(1-tanAtan...

全部展开

cosB+sinCcosA=0
cosB=-cos(A+C)=sinAsinC-cosAcosC
sinAsinC-cosAcosC+sinCcosA=0
cosAcosC(tanA-1+tanC)=0
因为cosAcosC不等于0,所以tanA+tanC-1=0
tanC=1-tanA
tan(A+C)=(tanA+tanC)/(1-tanAtanC)=1/(1-tanAtanC)
因为00
tanA+tanC=1,tanAtanC<=1/4
故1pi/4180-arctan(4/3)<=B<=3/4*pi

收起