f(x)=ax+1+(lnx)/x a属于R若f(x)在区间内单调增 求a的范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:11:30
f(x)=ax+1+(lnx)/x a属于R若f(x)在区间内单调增 求a的范围
xN@_śv{݇JhRBh@1D L 0K9 .?#n7MIe nҀ[eD|'A{:ޏB*ycgpUExlI0kF"< !ڎNq:aMj4-U̮\}lǭ>f\>*@#Bq\7+]T{6^uze5OV90iH"NӴoxs'{BI}}OJ_ gYa&.gG[EBN."Z!

f(x)=ax+1+(lnx)/x a属于R若f(x)在区间内单调增 求a的范围
f(x)=ax+1+(lnx)/x a属于R若f(x)在区间内单调增 求a的范围

f(x)=ax+1+(lnx)/x a属于R若f(x)在区间内单调增 求a的范围
答:
f(x)=ax+1+(lnx)/x在区间内单调递增
求导:f'(x)=a+1/x^2-(lnx)/x^2>=0
设g(x)=(lnx-1)/x^2<=a恒成立
求导:g'(x)=(1/x)*(1/x^2)-2(lnx-1)/x^3
=(1-2lnx+2)/x^3
=(3-2lnx)/x^3
解g'(x)=0得:3-2lnx=0,x=e^(3/2)
00,g(x)是增函数
x>e^(3/2),g'(x)<0,g(x)是减函数
所以:x=e^(3/2)时g(x)取得最大值
a>=g[e^(3/2)=[lne^(3/2)-1]/[e^(3/2)]^2=(3/2-1)/e^3=1/(2e^3)
所以:a>=1/(2e^3)