已知sin(α+β)=1,求证sin(2α+β)+sin(2α+3β)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:11:49
已知sin(α+β)=1,求证sin(2α+β)+sin(2α+3β)=0
xQA~%.Xȅ{$  ZnSpt^Qh63|}3^E^1QBKT꫄#cxb!(#Lyܯt=e#AJˁf|.VIbHx @܄6O҃~*H*47!p"c 5>ؾѯOVϗDe1 XO0 v 9)29˃f !͓pZR"oP}

已知sin(α+β)=1,求证sin(2α+β)+sin(2α+3β)=0
已知sin(α+β)=1,求证sin(2α+β)+sin(2α+3β)=0

已知sin(α+β)=1,求证sin(2α+β)+sin(2α+3β)=0
证明:
因为:sin(α+β)=1,[sin(α+β)]^2+[cos(α+β)]^2=1
所以,必有:cos(α+β)=0
所以:sin(2α+β)=sin(α+β)cosα+cos(α+β)sinα
=cosα=cos[(α+β)-β]
=cos(α+β)cosβ+sin(α+β)sinβ
=sinβ
sin(2α+3β)=sin(α+β)cos(α+2β)+cos(α+β)sin(α+2β)
=cos(α+2β)
=cos(α+β)cosβ-sin(α+β)sinβ
=-sinβ
所以,必有:sin(2α+β)+sin(2α+3β)=0

sin(α+β)=1,cos(α+β)=0,
sin(2α+2β)=2sin(α+β)cos(α+β)=0,
sin(2α+β)+sin(2α+3β)
=sin(2α+2β-β)+sin(2a+2β+β)
=sin(2a+2β)cosβ-cos(2a+2β)sinβ+sin(2a+2β)cosβ+cos(2a+2β)sinβ
=2sin(2a+2β)cosβ
=2*0*cosβ
=0