1/1*2+1/2*3+1/3*4+……+1/19*20+1/20*21的答案,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 02:16:47
x)372672Z&ڏched 222|>)v$铣MΆ44luJ`@cF
qc}sY|g}+O?TVdР@$
:ja\#[ 10XA1rAB@HVn9 ~
1/1*2+1/2*3+1/3*4+……+1/19*20+1/20*21的答案,
1/1*2+1/2*3+1/3*4+……+1/19*20+1/20*21的答案,
1/1*2+1/2*3+1/3*4+……+1/19*20+1/20*21的答案,
1/(1*2) = 1- 1/2
1/(2*3) = 1/2 - 1/3
依次类推
原式= 1 - 1/2 + 1/2 - 1/3 +...+ 1/20 - 1/21
= 1 - 1/21
= 20/21
1/1*2+1/2*3+1/3*4+……+1/19*20+1/20*21
=1-1/2+1/2-1/3+1/3-1/4+....+1/20-1/21
=1-1/21
=20/21
1+2+3+4+……+10000
1×2×3×4……×101
1+2+3+4……+101
1+2+3+4+5…………+100000000
(1/2+1/3+1/4+……+1/2013)(1+1/2+1/3+1/4+……+1/2012)-(1+1/2+1/3+……+1/2013)(1/2+……+1/2012)
(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+………+(1/1+2+3+………+100)
1+2/2*1+2+3/2+3*1+2+3+4/2+3+4*……*1+2……+2001/2+3+……+2001=
1+2+3+4+5+6……………………+100000000=?
1/(1-1/2)/(1-1/3)/(1-1/4)/……/(1-1/2012)
2(3+1)(3^2+1)(3^4+1)……(3^32+1)+1
1+2+3+4……+100000好的加分…………急…………………………快……………………………………
(1/2+1/3+1/4+1/5+……+1/2007)*(1+1/2+1/3+1/4+……+1/2006)………………计算:(1/2+1/3+1/4+1/5+……+1/2007)*(1+1/2+1/3+1/4+……+1/2006)-(1+1/2+1/3+1/4+……+1/2007)*(1/2+1/3+1/4+^+1/2006)要求简算
求证:1/2^3 +1/3^3 +1/4^3 +……+1/(n+1)^3
求证:1/2^3 +1/3^3 +1/4^3 +……+1/(n+1)^3
1+1×2+1×2×3+1×2×3×4……1×2×……×n=?
求和:1/1×2+1/2×3+1/3×4+……+1/n(n+1)
(1-1/2)×(1-1/3)×(1-1/4)……×(1-1/2008)计算方法
200×(1-1/2)×(1-1/3)×(1-1/4)×……×(1-1/100)=?