试证明:cos(4π/n)+cos(8π/n)+...+cos(4(n-1)π/n)+cos(4nπ/n ) = 0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 07:15:47
试证明:cos(4π/n)+cos(8π/n)+...+cos(4(n-1)π/n)+cos(4nπ/n ) = 0
x){~f3+9X|~6ia遹&yi<[ASV&HZFP]y@Y-Ϧo{0ɎgykʋK|9sӎmy :*u=[83Ol6PnDECBv .HSVE+N q$c0@̄6"Tjj fP `IAF@.32#dA@?h% ѧNT0*5$ف 

试证明:cos(4π/n)+cos(8π/n)+...+cos(4(n-1)π/n)+cos(4nπ/n ) = 0
试证明:cos(4π/n)+cos(8π/n)+...+cos(4(n-1)π/n)+cos(4nπ/n ) = 0

试证明:cos(4π/n)+cos(8π/n)+...+cos(4(n-1)π/n)+cos(4nπ/n ) = 0
n = 1,2的时候不成立,应该有限制n ≥ 3.
此时sin(2π/n) ≠ 0.
而2sin(2π/n)·(cos(4π/n)+cos(8π/n)+...+cos(4nπ/n))
= 2sin(2π/n)·cos(4π/n)+2sin(2π/n)·cos(8π/n)+...+2sin(2π/n)·cos(4nπ/n)
= (sin(6π/n)-sin(2π/n))+(sin(10π/n)-sin(6π/n))+...+(sin((4n+2)π/n)-sin((4n-2)π/n))
= sin((4n+2)π/n)-sin(2π/n)
= sin(4π+2π/n)-sin(2π/n)
= sin(2π/n)-sin(2π/n)
= 0.
即得cos(4π/n)+cos(8π/n)+...+cos(4nπ/n) = 0.