椭圆x^2/2+y^2=1,AB是椭圆的长为根号2的动弦,O为原点,求△OAB的面积S的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:38:40
椭圆x^2/2+y^2=1,AB是椭圆的长为根号2的动弦,O为原点,求△OAB的面积S的取值范围
xTN@YNdnGH&ɂ%jnhD64 EŕZR E m6mZH~/bR՝9ιcUM BqýQx!po|,wz oeч'֒ |m0~ WIdWiJ -='΋W?ݼ|Z{_֗E ÞcynBX8SSY*? I+0IFA |Eւ. IhrޟyH(Tks"Z41M8d3P212Ss=MAVkM֥xl?a:DCXH|bƗQ_1LI WKCxFƗ0T."#z(K٣X

椭圆x^2/2+y^2=1,AB是椭圆的长为根号2的动弦,O为原点,求△OAB的面积S的取值范围
椭圆x^2/2+y^2=1,AB是椭圆的长为根号2的动弦,O为原点,求△OAB的面积S的取值范围

椭圆x^2/2+y^2=1,AB是椭圆的长为根号2的动弦,O为原点,求△OAB的面积S的取值范围
设椭圆参数方程
x=√2·cosθ;
y=sinθ;
则:|AB|^2=(xA-xB)^2 + (yA-yB)^2=2(cosθA -cosθB)^2 +(sinθA -sinθB)^2
=2+cos^2 θA +cos^2 θB -4·cosθA·cosθB -2·sinθA·sinθB
即 2+cos^2 θA +cos^2 θB -4·cosθA·cosθB -2·sinθA·sinθB=2^2=4;
cos^2 θA +cos^2 θB -4·cosθA·cosθB -2·sinθA·sinθB=2^2=2;
-sin^2 θA -sin^2 θB -2·sinθA·sinθB=4·cosθA·cosθB ;
即 -(sinθA + sinθB)^2 =4·cosθA·cosθB ;
求直线AB的方程,用两点式:
x-√2·cosθB=[(√2·cosθA-√2·cosθB)/(sinθA-sinθB)]·(y-√2·sinθB);
设其与x轴交点为N,则易求得N坐标
N( (sinθA·cosθB-sinθB·cosθA)/(sinθA-sinθB)/(sinθA-sinθB) ,0 )
即|ON|=|(sinθA·cosθB-sinθB·cosθA)/(sinθA-sinθB)|.
则可知,2·S△OAB=|yA + yB|·|ON|
=|sinθA + sinθB|·|(sinθA·cosθB-sinθB·cosθA)/(sinθA-sinθB)|
=|(sinθA + sinθB)/(sinθA-sinθB)|·|sin(θA-θB)|
=|√(sinθA + sinθB)^2 /((sinθA+sinθB)^2 -4·sinθA·sinθB)|·|sin(θA-θB)|
=|√(-4·cosθA·cosθB /(-4·cosθA·cosθB -4·sinθA·sinθB)|·|sin(θA-θB)|
=|√(cosθA·cosθB /(cosθA·cosθB +sinθA·sinθB)|·|sin(θA-θB)|
=|√(cosθA·cosθB /cos(θA-θB) )|·|sin(θA-θB)|

设AB是过椭圆中心的弦,F是椭圆的一个焦点.则三角形ABC最大面积?椭圆为x^2+2y^2=1 过椭圆是椭圆x^2/25+y^x/9=1的焦点,倾斜角为π/4弦AB的长为 椭圆方程2题1 椭圆的焦点F1(6,0),中心到准线的距离为10,则此椭圆的标准方程是?2 已知中心在原点,焦点在X轴上的椭圆与直线x+y-1=0交于A B两点,M为AB中点,OM斜率为0.25,椭圆短轴长为2,椭圆方程 设AB是过椭圆x^2/9+y^2/25=1中心的弦,F1是椭圆上的焦点,求△ABF1面积的最大值 椭圆c与椭圆(x-3)平方/9+(y-2)平方/4=1关于直线x+y=0对称,椭圆c的方程是? 椭圆ax^2+by^2=1与直线x+y=1相交于AB两点,AB的中点c与椭圆中心连线的斜率是√2/2 求椭圆的斜率 设点f1是椭圆x^2/2+y^2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB面积的最大值 若F1F2是椭圆X^2/a^2+Y^2/b^2=1的两个焦点,点AB是椭圆与X轴的两个交点,P是椭圆上的任意一点,则以PF1为...若F1F2是椭圆X^2/a^2+Y^2/b^2=1的两个焦点,点AB是椭圆与X轴的两个交点,P是椭圆上的任意一点,则 已知经过椭圆x^2/25+y^2/16=1的右焦点F2做垂直于x轴的直线AB,交椭圆于A、B两点,F1是椭圆的左焦点:求三角形AF1B的周长 一道椭圆的题,已知椭圆x^2/a^2+y^2/b^2=1 (a>b>0)A B是 椭圆上两点,线段AB的垂直平分线与X轴相交与P( x0,0)证明:|x0| P(4,0)椭圆x^2/4+y^2/3=1,AB是椭圆上关于x轴对称的任意两个不同的点,连接PB交椭圆于另一点E,证...P(4,0)椭圆x^2/4+y^2/3=1,AB是椭圆上关于x轴对称的任意两个不同的点,连接PB交椭圆于另一点E, 已知,椭圆C:x²+3y²=3b²(b>0).(1)求椭圆C的离心率 (2)若b=1,AB是椭圆已知,椭圆C:x²+3y²=3b²(b>0).(1)求椭圆C的离心率 (2)若b=1,AB是椭圆C上两点,AB的绝对值等于√3,求A 定义 离心率e=(根号5-1)/2的椭圆为黄金椭圆 对于椭圆x平方/a平方+y平方/b平方=1(a>b>0).c为椭圆半焦距 如果a.b.c不成等比数列 则椭圆 a.一定是黄金椭圆 b 一定不是黄金椭圆c 可能是黄金椭圆d 可能 已知三角形ABC的顶点BC在椭圆X^2/3+Y^2=1上,顶点A是椭圆的一个焦点,且椭圆的另一焦点在边BC上求三角形AB的周长 已知椭圆C:(x^2)/4+(y^2)/3=1 设椭圆C右焦点为F2,A、B是椭圆上的点,且向量AF2=向量2F2B,求直线AB的斜率 已知椭圆3X的平方+7y的平方=21.(1).求椭圆的焦点坐标,焦距; (2).若P是椭圆上一点,且改点到椭圆已知椭圆3X的平方+7y的平方=21.(1).求椭圆的焦点坐标,焦距;(2).若P是椭圆上一点,且改 双曲线x^2/16-y^2/9=1,椭圆的焦点恰好是双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,椭圆方程? 已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆的离心率e=√3/2(1)