lim(x→1) lncos(x-1)/(1-sin(πx/2))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:36:27
lim(x→1) lncos(x-1)/(1-sin(πx/2))
x)ըx6PS!'/9XBPS_P83O|CMR>q lH0i{mQGjôbӅ>xѺF`qFpy `>tƧzx6cӎϧxeS^lԧ3jyٹɮk=tɪ= ~/om 젡b` @$G

lim(x→1) lncos(x-1)/(1-sin(πx/2))
lim(x→1) lncos(x-1)/(1-sin(πx/2))

lim(x→1) lncos(x-1)/(1-sin(πx/2))
原式=lim(x→1) ln[1+cos(x-1)-1]/(1-sin(πx/2))
=lim(x→1) [cos(x-1)-1]/(1-sin(πx/2))
=lim(x→1)[-1/2(x-1)^2]/(1-sin(nx/2)
接下就完全是利用洛比达法则了,鉴于符号太难打了,就不赘述了

用洛比达法则